Update on Australian transport trends (December 2019)

Mon 30 December, 2019

Each year, just in time for Christmas, the good folks at the Australian Bureau of Infrastructure, Transport, and Regional Economics (BITRE) publish a mountain of data in their Yearbook. This post aims to turn those numbers (and some other data sources) into useful knowledge – with a focus on vehicle kilometres travelled, passenger kilometres travelled, mode shares, car ownership, driver’s licence ownership, greenhouse gas emissions, and transport costs.

There are some interesting new patterns emerging – read on.

Vehicle kilometres travelled

According to the latest data, road transport volumes actually fell in 2018-19:

Here’s the growth by vehicle type since 1971:

Light commercial vehicle kilometres have grown the fastest, curiously followed by buses (although much of that growth was in the 1980s).

Car kilometre growth has slowed significantly since 2004, and actually went down in 2018-19 according to BITRE estimates (enough to result in a reduction in total vehicle kilometres travelled).

On a per capita basis car use peaked in 2004, with a general decline since then. Here’s the Australian trend (in grey) as well as city level estimates to 2015 (from BITRE Information Sheet 74):

Technical note: “Australia” lines in these charts represent data points for the entire country (including areas outside capital cities).

Darwin has the lowest average which might reflect the small size of the city. The blip in 1975 is related to a significant population exodus after Cyclone Tracey caused significant destruction in late 1974 (the vehicle km estimate might be on the high side).

Canberra, the most car dependent capital city, has had the highest average car kilometres per person (but it might also reflect kilometres driven by people from across the NSW border in Queanbeyan).

The Australia-wide average is higher than most cities, with areas outside capital cities probably involving longer average car journeys and certainly a higher car mode share.

Passenger kilometres travelled

Overall, here are passenger kms per capital for various modes for Australia as a whole (note the log-scale on the Y axis):

Air travel took off (pardon the pun) in the late 1980s (with a lull in 1990), car travel peaked in 2004, bus travel peaked in 1990 and has been relatively flat since, while rail has been increasing in recent years.

It’s possible to look at car passenger kilometres per capita, which takes into account car occupancy – and also includes more recent estimates up until 2018/19.

Here’s a chart showing total car passenger kms in each city:

The data shows that Melbourne has now overtaken Sydney as having the most car travel in total.

Another interesting observation is that total car travel declined in Perth, Adelaide, and Sydney in 2018-19. The Sydney result may reflect a mode shift to public transport (more on that shortly), while Perth might be impacted by economic downturn.

While car passenger kilometres per capita peaked in 2004, there were some increases until 2018 in some cities, but most cities declined in 2019. Darwin is looking like an outlier with an increase between 2015 and 2018.

BITRE also produce estimates of passenger kilometres for other modes (data available up to 2017-18 at the time of writing).

Back to cities, here is growth in rail passenger kms since 2010:

Sydney trains have seen rapid growth in the last few years, probably reflecting significant service level upgrades to provide more stations with “turn up and go” frequencies at more times of the week.

Adelaide’s rail patronage dipped in 2012, but then rebounded following completion of the first round of electrification in 2014.

Here’s a longer-term series looking at per-capita train use:

Sydney has the highest train use of all cities. You can see two big jumps in Perth following the opening of the Joondalup line in 1992 and the Mandurah line in 2007. Melbourne, Brisbane and Perth have shown declines over recent years.

Here is recent growth in (public and private) bus use:

Darwin saw a massive increase in bus use in 2014 thanks to a new nearby LNG project running staff services.

In more recent years Sydney, Canberra, and Hobart are showing rapid growth in bus patronage.

Here’s bus passenger kms per capita:

Investments in increased bus services in Melbourne and Brisbane between around 2005 and 2012 led to significant patronage growth.

Bus passenger kms per capita have been declining in most cities in recent years.

Australia-wide bus usage is surprisingly high. While public transport bus service levels and patronage would certainly be on average low outside capital cities, buses do play a large role in carrying children to school – particularly over longer distances in rural areas. The peak for bus usage in 1990 may be related to deregulation of domestic aviation, which reduced air fares by around 20%.

Melbourne has the lowest bus use of all the cities, but this likely reflects the extensive train and tram networks carrying the bulk of the public transport passenger task. Melbourne is different to every other Australian city in that trams provide most of the on-road public transport access to the CBD (with buses performing most of this function in other cities).

For completeness, here’s growth in light rail patronage:

Sydney light rail patronage increased following the Dulwich Hill extension that opened in 2014, while Adelaide patronage increased following an extension to the Adelaide Entertainment Centre in 2010.

We can sum all of the mass transit modes (I use the term “mass transit” to account for both public and private bus services):

Sydney is leading the country in mass transport use per capita and is growing strongly, while Melbourne, Brisbane, Perth have declined in recent years.

Mass transit mode share

We can also calculate mass transit mode share of motorised passenger kilometres (walking and cycling kilometres are unfortunately not estimated by BITRE):

Sydney has maintained the highest mass transit mode share, and in recent years has grown rapidly with a 3% mode shift in the three years 2016 to 2019, mostly attributable to trains. The Sydney north west Metro line opened in May 2019, so would only have a small impact on these figures.

Melbourne made significant gains between 2005 and 2009, and Perth also grew strongly 2007 to 2013.

Here’s how car and mass transit passenger kilometres have grown since car used peaked in 2004:

Mass transit use has grown much faster than car use in Australia’s three largest cities. In Sydney and Melbourne it has exceeded population growth, while in Brisbane it is more recently tracking with population growth.

Mass transit has also outpaced car use in Perth, Adelaide, and Hobart:

In Canberra, both car and mass transit use has grown much slower than population, and it is the only city where car growth has exceeded public transport growth.

Car ownership

The ABS regularly conduct a Motor Vehicle Census, and the following chart includes data up until January 2019.

Technical note: Motor Vehicle Census data (currently conducted in January each year, but previously conducted in March or October) has been interpolated to produce June estimates for each year, with the latest estimate being for June 2018.

In 2017-18 car ownership declined slightly in New South Wales, Victoria, and Western Australia, but there was a significant increase in the Northern Territory. Tasmania has just overtaken South Australia as the state with the highest car ownership at 63.1 cars per 100 residents.

Victorian car ownership has been in decline since 2011, which is consistent with a finding of declining motor vehicle ownership in Melbourne from census data (see also an older post on car ownership).

Driver’s licence ownership

Thanks to BITRE Information Sheet 84, the BITRE Yearbook 2019, and some useful state government websites (NSW, SA, Qld), here is motor vehicle licence ownership per 100 persons (of any age) from June 1971 to June 2018 or 2019 (depending on data availability):

Technical note: the ownership rate is calculated as the sum of car, motorbike and truck licenses – including learner and probationary licences, divided by population. Some people have more than one driver’s licence so it’s likely to be an over-estimate of the proportion of the population with any licence.

There’s been slowing growth over time, but Victoria has seen slow decline since 2011, and the ACT peaked in 2014.

Here’s a breakdown by age bands for Australia as a whole (note each chart has a different Y-axis scale):

There was a notable uptick in licence ownership for 16-19 year-olds in 2018. Otherwise licencing rates have increased for those over 40, and declined for those aged 20-39.

Licencing rates for teenagers (refer next chart) had been trending down in South Australia and Victoria until 2017, but all states saw an increase in 2018 (particularly Western Australia). The most recent 2019 data from NSW and Queensland shows a decline. The differences between states partly reflects different minimum ages for licensing.

The trends are mixed for 20-24 year-olds: the largest states of Victoria and New South Wales have seen continuing declines in licence ownership, but all other states and territories are up (except Queensland in 2019).

New South Wales, Victoria, and – more recently – Queensland are seeing downward trends in the 25-29 age bracket:

Licencing rates for people in their 70s are rising in all states (I suspect a data error for South Australia in 2016):

A similar trend is clear for people aged 80+ (Victoria was an anomaly before 2015):

See also an older post on driver’s licence ownership for more detailed analysis.

Transport greenhouse gas emissions

[this emissions section updated on 8 January 2020 with BITRE estimates for 1975-2019]

According to the latest adjusted quarterly figures, Australia’s domestic non-electric transport emissions peaked in 2018 and have been slightly declining in 2019, which reflects reduced consumption of petrol and diesel. However it is too early to know whether this is another temporary peak or long-term peak.

Non-electric transport emissions made up 18.8% of Australia’s total emissions as at September 2019.

Here’s a breakdown of transport emissions:

A more detailed breakdown of road transport emissions is available back to 1990:

Here’s growth in transport sectors since 1975:

Road emissions have grown steadily, while aviation emissions took off around 1991. You can see that 1990 was a lull in aviation emissions, probably due to the pilots strike around that time.

In more recent years non-electric rail emissions have grown strongly. This will include a mix of freight transport and diesel passenger rail services – the most significant of which will be V/Line in Victoria, which have grown strongly in recent years (140% scheduled service kms growth between 2005 and 2019). Adelaide’s metropolitan passenger train network has run on diesel, but more recently has been transitioning to electric.

Here is the growth in each sector since 1990 (including a breakdown of road emissions):

Here are average emissions per capita for various transport modes in Australia, noting that I have used a log-scale on the Y-axis:

Per capita emissions are increasing for most modes, except cars. Total road transport emissions per capita peaked in 2004 (along with vehicle kms per capita, as above).

It’s possible to combine data sets to estimate average emissions per vehicle kilometre for different vehicle types (note I have again used a log-scale on the Y-axis):

Note: I suspect the kinks for buses and trucks in 2015, and motor cycles in 2011 are issues to do with assumptions made by BITRE, rather than actual changes.

The only mode showing significant change is cars – which have reduced from 281 g/km in 1990 to 243 g/km in 2019.

However, the above figures don’t take into account the average passenger occupancy of vehicles. To get around that we can calculate average emissions per passenger kilometre for the passenger-orientated modes:

Domestic aviation estimates go back to 1975, and you can see a dramatic decline between then and around 2004 – followed little change (even a rise in recent years). However I should mention that some of the domestic aviation emissions will be freight related, so the per passenger estimates might be a little high.

Car emissions per passenger km in 2018-19 were 154.5g/pkm, while bus was 79.4g/pkm and aviation 127.2g/pkm.

Of course the emissions per passenger kilometres of a bus or plane will depend on occupancy – a full aeroplane or bus will have likely have significantly lower emissions per passenger km. Indeed, the BITRE figures imply an average bus occupancy of around 9 people (typical bus capacity is around 60) – so a well loaded bus should have much lower emissions per passenger km. The operating environment (city v country) might also impact car and bus emissions. On the aviation side, BITRE report a domestic aviation average load factor of 78% in 2016-17.

Cost of transport

The final topic for this post is the real cost of transport. Here are headline real costs (relative to CPI) for Australia:

Technical note: Private motoring is a combination of factors, including motor vehicle retail prices and automotive fuel. Urban transport fares include public transport as well as taxi/ride-share.

The cost of private motoring has tracked relatively close to CPI, although it trended down between 2008 and 2016. The real cost of motor vehicles has plummeted since 1996. Urban transport fares have been increasing faster than CPI since the late 1970s, although they have grown slower than CPI (on aggregate) since 2013.

Here’s a breakdown of the real cost of private motoring and urban transport fares by city (note different Y-axis scales):

Note: I suspect there is some issue with the urban transport fares figure for Canberra in June 2019. The index values for March, June, and September 2019 were 116.3, 102.0, and 118.4 respectively.

Urban transport fares have grown the most in Brisbane, Perth and Canberra – relative to 1973.

However if you choose a different base year you get a different chart:

What’s most relevant is the relative change between years – eg. you can see Brisbane’s experiment with high urban transport fare growth between 2009 and 2017 in both charts.

Hopefully this post has provided some useful insights into transport trends in Australia.


Mapping Melbourne’s journeys to work

Mon 24 June, 2019

The unwritten rules of mapping data include avoiding too much data and clutter, and not using too much colour. This blog often violates those rules, and when it comes to visualising journeys to work, I think we can learn a lot about cities with somewhat cluttered colourful animated maps.

This post maps journeys to work in Melbourne, using data from the 2016 census. I will look at which types of home-work pairs have different public, private and active transport mode shares and volumes.

Although this post will focus on Melbourne, I will include a brief comparison to Sydney at the end.

Where are public transport journeys to work in Melbourne?

First I need to explain the maps you are about to see.

So that I can show mode shares, I’ve grouped journeys between SA2s (which are roughly the size of a suburb). Lines are drawn from the population centroid of the home SA2 (thin end) to the employment centroid of the work SA2 (thicker end). Centroids are calculated as the weighted average location residents/jobs in each SA2 (using mesh block / destination zone data). This generally works okay for urban areas, but be aware that actual trips will be distributed across SA2s, and some SA2s on the urban fringe are quite large.

The thickness of each line at the work end is roughly proportional to the number of journeys by the mode of interest between the home-work pair (refer legends), but it’s difficult to use a scale that is meaningful for smaller volumes. Unfortunately there’s only so much you can do on a 2-D chart.

I’ve not drawn lines where there are fewer than 50 journeys in total (all modes), or where there were no journeys of the mode that is the subject of the map. This threshold of 50 isn’t perfect either as SA2s are not consistently sized within and between cities, so larger SA2s are more likely to generate lines on the map.

To try to help deal with the clutter, I’ve made the lines somewhat transparent, and also animated the map to highlight trips with different mode share intervals. For frames showing all lines, the lines with highest mode share are drawn on top.

So here is an animated map showing public transport journeys to work in Melbourne, by different mode share ranges and overall:

Technical note: I have included journeys to work that are internal to an SA2. Usually these appear as simple circles, but sometimes they appear as small teardrops where the population and employment centroids are sufficiently far apart.

You can see that the highest PT shares and largest PT volumes are for journeys to the central city, and generally from SA2s connected to Melbourne CBD by train (including many outer suburbs).

As the animation moves to highlight lower PT mode share ranges, the lines become a little less radial, a little shorter on average, and the lowest (non-zero) PT mode shares are mostly for suburban trips.

A notable exception is journeys to Port Melbourne Industrial SA2 (also known as Fishermans Bend), which is located at the junction of two major motorways and is remote from rapid public transport (it does however have a couple of high frequency bus lines from the CBD).

The lowest PT mode shares are seen for trips around the outer suburbs. The maps above unfortunately aren’t very good at differentiating small volumes. The following animated map shows public transport journeys with a filter progressively applied to remove lines with small numbers of public transport journeys (refer blue text in title):

You can see that most of the outer suburban lines quickly disappear as they have very small volumes. Inter-suburban lines with more than 50 public transport journeys go to centres including Dandenong, Clayton, Box Hill, and Heidelberg.

Here’s another animation that builds up the map starting with low public transport mode share lines, and then progressively adds lines with higher public transport mode shares:

As an aside, here is a chart showing journeys to work by straight line distance (between SA2 centroids), public transport mode share, work distance from the CBD and home-work volume:

The black dots represent journeys to the inner 5km of the city, and you can see public transport has a high mode share of longer trips. Public transport mode share falls away for shorter journeys to the inner city as people are more likely to use active transport. A dot on the top left of the curve is 8,874 journeys from Docklands to Melbourne – which benefits from the free tram zone and the distances can be 1-2 km. Most of the longer journeys with low public transport mode share are to workplaces remote from the CBD (coloured dots).

Another way to deal with the clutter of overlapping lines around the CBD is to progressively remove lines to workplaces in and around the CBD. Here is another animated map that does exactly so that you can better see journeys in the nearby inner and middle suburbs.

As you strip away the CBD and inner suburbs, you lose most lines with high public transport mode shares and volumes. However some high public transport mode share lines remain, including the following outbound journeys:

  • Melbourne (CBD) to Melbourne Airport: 72% of 64 journeys
  • Melbourne (CBD) to Box Hill: 66% of 76 journeys
  • Melbourne (CBD) to Clayton: 57% of 82 journeys
  • South Yarra – East to Clayton: 57% of 173 journeys

Just keep in mind that these are all very small volumes compared to total journeys in Melbourne.

You might have noticed on the western edge of the map some yellow and orange lines from the Wyndham area (south-west Melbourne) that go off the map towards the south west. These journeys go to Geelong.

Here’s a map showing journeys around Geelong and between Geelong and Greater Melbourne (journeys entirely within Greater Melbourne excluded):

You can see very high public transport mode shares for journeys from the Geelong and Bellarine region to the Melbourne CBD and Docklands (and fairly large volumes), but no lines to Southbank, East Melbourne, Parkville or Carlton – all more remote from Southern Cross Station, the city terminus for regional trains.

(The other purple lines to the CBD are from Ballarat, Bacchus Marsh, Daylesford, Woodend, Kyneton, Castlemaine, Kilmore-Broadford and Warragul, with at least 60 journeys each.)

You can also see those orange and yellow lines from the Wyndham area to central Geelong, being mode shares of 20-40%. The Geelong train line provides frequent services between Tarneit, Wyndham Vale, and Geelong, and has proved reasonably popular with commuters to Geelong (frequency was significantly upgraded in June 2015 with the opening of the Regional Rail Link, just 14 months before the census of August 2016).

However, public transport mode shares for travel within Greater Geelong are very small – even for SA2 that are connected by trains. This might reflect Geelong train station being on the edge of its CBD, relatively cheap parking in central Geelong, limited stopping frequency at some stations (many at 40 minute base pattern), and/or limited walk-up population catchments at several of Geelong’s suburban train stations.

Does public transport have significant mode share for cross-suburban journeys to work?

To search for cross-suburban journeys with relatively high public transport mode shares, here is a map that only shows lines with public transport mode shares above 20% between homes and workplaces both more than 5 km from the CBD (yes, those are arbitrary thresholds):

Of these journeys, the highest mode shares are for journeys from the inner northern suburbs to St Kilda and Hawthorn. There’s also a 49% mode share from Footscray to Maribyrnong (connected by frequent trams and buses).

The tear drop to the north of the city is 114 people who used PT from Coburg to Brunswick (connected by two tram routes and one train route).

Most of the other links on this map are fairly well aligned with train, tram, or SmartBus routes, suggesting high quality services are required to attract significant mode shares.

But these trips are a tiny fraction of journeys to work around Melbourne. In fact 3.0% of journeys to work in Melbourne were by public transport to workplaces more than 5 km from the CBD. The same statistic for Sydney is more than double this, at 7.3%.

What about private transport journeys?

Firstly, here’s a map showing private transport mode shares and volumes, building up the map starting with low private mode share lines.

The links with lowest private transport mode shares are very radial as you might expect (pretty much the inverse of the public transport maps). Progressively less radial lines get added to the map before there is a big bang when the final private transport mode share band of 95-100% gets added, with large volumes of outer suburban trips.

For completeness, here’s an animation that highlights each mode share range individually.

There are some other interesting stories in this data. The following map shows private transport mode share of journeys to work, excluding workplaces up to 10 km from the CBD to remove some clutter.

If you look carefully you’ll see that there is a much lower density of trips that cross the Yarra River (which runs just south of Heidelberg and Eltham). There are limited bridge crossings, and this is probably inhibiting people considering such journeys.

The construction of the North East Link motorway will add considerable cross-Yarra road capacity, and I suspect it may induce more private transport journeys to work across the Yarra River (although tolls will be a disincentive).

What about active transport journeys?

Next is a map for active transport journeys, but this time I’ve progressively added a filter for the number of active transport journeys, as most of the lines on the full chart are for very small volumes.

As soon as the filter reaches a minimum of 50 active journeys most of the lines between SA2s in the middle and outer suburbs disappear. Note that journeys between SA2s are not necessarily long, they might just be a short trip over the boundary.

Then at minimum 200 journeys you can only see central city journeys plus intra-SA2 journeys in relatively dense centres such as Hawthorn, Heidelberg, Box Hill, Clayton, Frankston, Mornington, Footscray, and St Kilda. The large volume in the south of the map that hangs around is Hastings – Somers, where 882 used active transport (probably mostly walking to work on the HMAS Cerebus navy base).

Active transport journeys are mostly much shorter than private and public transport journeys – as you might expect as most people will only walk or ride a bicycle so far. But there are people who said they made very long active transport journeys to work – the map shows some journeys from Point Nepean, Torquay, Ballarat, Daylesford, and Castlemaine to Melbourne. That’s some keen cyclists, incredible runners, people who changed jobs in the week of the census (the census asks for work location the prior week, and modes used on census day), and/or people who didn’t fill in their census forms accurately. The volumes of these trips are very small (mostly less than 5).

That map is very congested around the central city, so here is a map zoomed into the inner suburbs and this time animated by building up the map starting with high active transport mode share lines.

The highest active transport mode shares are for travel within Southbank and from Carlton to Parkville, followed by journeys to places like the CBD, Docklands, South Yarra, South Melbourne, Carlton, Fitzroy, Parkville, and Carlton.

Then you see a lot of trips added from the inner northern suburbs, which are connected to the central city by dare-I-say “above average” cycling infrastructure across some relatively flat terrain. In particular, a thick red line on the map is for 471 active transport journeys from Brunswick to Melbourne (CBD) with a mode share of 17%. A second thick red line is Richmond to Melbourne (CBD) being 589 journeys with 16% active mode share.

Another way of summarising mode shares by work and home distance from the CBD

I’ve experimented with another visualisation approach to overcome the clutter issues. The next charts have home distances from the CBD on the Y axis, work distances from the CBD on the X axis, bubble size representing number of journeys, and colour showing mode shares. I’m drawing smaller journey volumes on top, and I’ve used some transparency to help a little with the clutter.

Firstly here is public transport (animated to show each mode share range individually):

The chart is roughly a V-shape with many trips on the left edge and along a diagonal (mostly representing intra-SA2 journeys), then with several vertical stripes being major suburban employment destinations (including Dandenong at 31 km, Clayton at 19 km, and Frankston at 40 km). Trips above the diagonal are roughly inbound, while trips below the diagonal are roughly outbound.

Some observations:

  • The diagonal line (mostly local journeys) has very low public transport mode shares (sometimes zero).
  • Higher PT mode shares are only seen on the far left and bottom left hand corner of the chart. Some outliers include Richmond to Box Hill (32%), Clayton to Malvern East (32%), and South Yarra – East to Clayton (57%).
  • PT mode shares of 80+% are only seen for journeys to the CBD from home SA2s at least 11 km out (with one exception of Melbourne CBD to St Kilda with 80% PT share).
  • Home-work pairs with zero public transport journeys are scattered around the middle and outer suburbs, most being longer distance journeys (home and work at different distances from the CBD).

Here’s the same chart for private transport:

The lowest private transport shares are seen for journeys to the CBD. The diagonal has many mode shares in the 80-90% range.

And here is active transport:

The highest active transport mode shares are seen in the central city area, followed by the diagonal mostly representing local journeys (with generally higher shares closer to the CBD). Some notable outliers include local trips within Clayton (1,298 active trips / 46% active mode share), Box Hill (914 / 40%), Hastings – Somers (1,762 / 27%), Flinders (240 / 24%), Glen Waverley – West (308 / 21%), and Mentone (226 / 23%).

How does Sydney compare to Melbourne?

Here is a chart with private transport mode share maps for both Melbourne and Sydney, animated in tandem to progressively add higher mode share journeys.

You can see that Sydney has a lot more trips at lower private transport mode shares, and that workplaces outside the city centre start to show up earlier in the animation in Sydney – being the dense transit-orientated suburban employment clusters that are largely unique to Sydney (see: Suburban employment clusters and the journey to work in Australian cities).

If time permits, I may do similar analysis for Sydney and other cities in future posts.


How radial are journeys to work in Australian cities?

Fri 14 June, 2019

In almost every city, hordes of people commute towards the city centre in the morning and back away from the city in the evening. This largely radial travel causes plenty of congestion on road and public transport networks.

But only a fraction of commuters in each city actually work in the CBD. So just how radial are journeys to work? How does it vary between cities? And how does it vary by mode of transport?

This post takes a detailed look at journey to work data from the ABS 2016 Census for Melbourne, Sydney, and to a less extent Brisbane, Perth, Adelaide and Canberra. I’ve included some visualisations for Melbourne and Sydney that I hope you will find interesting.

How to measure radialness?

I’m measuring radialness by the difference in degrees between the bearing of the journey to work, and a direct line from the home to the CBD of the city. I’m calling this the “off-radial angle”.

So an off-radial angle of 0° means the journey to work headed directly towards the CBD. However that doesn’t mean the workplace was the CBD, it might be have been short of the CBD or even on the opposite side of the CBD.

Similarly, an off-radial angle of 180° means the journey to work headed directly away from the CBD. And a value of 90° means that the trip was “orbital” relative to the CBD (a Melbourne example would be a journey from Box Hill that headed either north or south). And then there are all the angles in between.

To deal with data on literally millions of journeys to work, I’ve grouped journeys by home and work SA2 (SA2s are roughly the size of a suburb), and my bearing calculations are based on the residential centroid of the home SA2 and the employment centroid of the work SA2.

So it is certainly not precise analysis, but I’ve also grouped off-radial angles into 10 degree intervals, and I’m mostly looking for general trends and patterns.

So how radial are trips in Melbourne and Sydney?

Here’s a chart showing the proportion of 2016 journeys to work at different off-radial angle intervals:

Technical note: As per all my posts, I’ve designated a main mode for journeys to work: any journey involving public transport is classed as “Public”, any journey not involving motorised transport is classed as “Active”, and any other journey is classed as “Private”.

In both cities over 30% of journeys to work were what you might call “very radial” – within 10 degrees of perfectly radial. It was slightly higher in Melbourne.

You can also see that public transport trips are even more radial, particularly in Melbourne. In fact, around two-thirds of public transport journeys to work in 2016 had a destination within 2 km of the CBD.

Melbourne’s “mass transit” system (mostly trains and trams) is very radial, so you might be wondering why public transport accounts for less than half of those very radial journeys (41% in fact).

Here are Melbourne’s “very radial” journeys broken down by workplace distance from the Melbourne CBD:

very-radial-trips-by-mode-distance-from-cbd

Public transport dominates very radial journeys to workplaces within 2 km of the centre of the CBD, but is a minority mode for workplaces at all other distances. Many of these highly radial journeys might not line up with a transit line towards the city, and/or there could well be free parking at those suburban workplaces that make driving all too easy. I will explore this more shortly.

Sydney however had higher public transport mode shares for less radial journeys to work. I think this can be explained by Sydney’s large and dense suburban employment clusters that achieve relatively high public transport mode shares (see: Suburban employment clusters and the journey to work in Australian cities), the less radial nature of Sydney’s train network, and generally higher levels of public transport service provision, particularly in inner and middle suburbs.

Visualising radialness on maps

To visualise journeys to work it is necessary to simplify things a little so maps don’t get completely cluttered. On the following maps I show journey to work volumes between SA2s where there are at least 50 journeys for which the mode is known. The lines between home and work SA2s get thicker at the work end, and the thickness is proportional to the volume (although it’s hard to get a scale that works for all scenarios).

First up is an animated map that shows journeys to work coloured by private transport mode share, with each frame showing a different interval of off-radial angle (plus one very cluttered view with all trips):

(click/tap to enlarge maps)

I’ve had to use a lot of transparency so you have a chance at making out overlapping lines, but unfortunately that makes individual lines a little harder to see, particularly for the larger off-radial angles.

You can see a large number of near-radial journeys, and then a smattering of journeys at other off-radial angles, with some large volumes across the middle suburbs at particular angles.

The frame showing very radial trips was rather cluttered, so here is an map showing only those trips, animated to strip out workplaces in the CBD and surrounds so you can see the other journeys:

Private transport mode shares of very radial trips are only very low for trips to the central city. When the central city jobs are stripped out, you see mostly high private transport mode shares. Some relative exceptions to this include journeys to places like Box Hill, Hawthorn, and Footscray. More on that in a future post.

Here are the same maps for Sydney:

Across both of these maps you can find Sydney’s suburban employment clusters which have relatively low private transport mode shares. I explore this, and many other interesting ways to visualise journeys to work on maps in another post.

What about other Australian cities?

To compare several cities on one chart, I need some summary statistics. I’ve settled on two measures that are relatively easy to calculate – namely the average off-radial angle, and the percent of journeys that are very radial (up to 10°).

The ACT (Canberra) actually has the most radial journeys to work of these six cities, despite it being something of a polycentric city. Adelaide has the next most radial journeys to work, but there’s not a lot of difference in the largest four cities, despite Sydney being much more a polycentric city than the others. Note the two metrics do not correlate strongly – summary statistics are always problematic!

Here are those radialness measures again, but broken down by main mode:

Sydney now looks the least radial of the cities on most measures and modes, particularly by public transport.

The Australian Capital Territory (Canberra) has highly radial private and active journeys to work, but much less-radial public transport journeys than most other cities. This probably reflects Canberra’s relatively low cost parking (easy to drive to the inner city), but also that the public transport bus network is orientated around the suburban town centres that contain decent quantities of jobs.

Adelaide has the most radial journeys to work when it comes to active and public transport.

What about other types of travel?

In a future post, I’ll look at the radialness of general travel around Melbourne using household travel survey data (VISTA), and answer some questions I’ve been pondering for a while. Is general travel around cities significantly less radial than journeys to work? Is weekend travel less radial than weekday travel?

Follow the blog on twitter or become an email subscriber (see top-right of this page) to get alerted when that comes out.


Visualising the components of population change in Australia

Sat 27 April, 2019

Australian cities are growing in population as a result of international migration, internal migration, and births outnumbering deaths. But which of these factors are most at play in different parts of the country?

Thanks to ABS publishing data on the components of population growth with their Regional Population Growth product, we now have estimates of births, deaths, internal/international arrivals, and internal/international departures right down to SA2 geography for 2016-17 and 2017-18.

This post aims to summarise the main explanation for population change in different parts of the country.

This post isn’t much about transport, but I hope you also find the data interesting. That said, it’s possible that immigrants from transit-orientated countries might be more inclined to use public transport in Australia, and that might impact transport demand patterns. We know that recent immigrants are more likely to travel to work by public transport than longer term residents, but that probably also has a lot to do with where they are settling.

How is population changing in bigger and smaller cities?

First up, I’ve divided Australia into Capital Cities (Greater Capital City Statistical Areas), Large regional cities (Significant Urban Areas with population 100,000+, 2016 boundaries), small regional cities (Significant Urban Areas, with population 10,000 to 100,000, 2016 boundaries ) and “elsewhere”.

Here’s a chart showing the total of the six components of population change in each of those four place types. I’ve animated the chart (and most upcoming charts) to show changes in the years to June 2017 and June 2018, with a longer pause on 2018.

There were significant internal movements in all parts of Australia (shown in green) – even more so in 2018. These include people moving between any SA2s, whether they adjacent within a city or across the country.

International arrivals and departures were much larger in capital cities and there were more arrivals than departures in all four place types. International arrivals declined between 2017 and 2018, while international departures increased slightly between 2017 and 2018.

Births also outnumbered deaths in all place categories in both years.

Here’s a look at the larger capital cities individually:

The chart shows Sydney, Perth, and Adelaide had more internal departures than arrivals. These cities only grew in total population because of natural increase and net international immigration. Melbourne and Brisbane had a net increase from internal movements in both 2017 and 2018, while Canberra has been a lot more even.

International arrivals outnumbered international departures and births significantly outnumbered deaths in all cities. Melbourne and Canberra were the only cities to see a significant increase in international arrivals between 2017 and 2018.

Here is the same chart but for medium sized cities:

Again, there were much larger volumes of internal migration in 2017-18 compared to 2016-17.

The Gold Coast is the only medium-sized city to have significant volumes of international movements. The fast population growth of the Gold and Sunshine Coasts is mostly coming from internal arrivals.

What is the dominant explanation for population change in different parts of Australia?

As mentioned the ABS data goes down to SA2 statistical geography which allows particularly fine grain analysis, with six measures available for each SA2. However it is difficult to show those six components spatially. They can be consolidated into three categories: net natural increase, net internal arrivals/departures, and net international arrivals/departures, but that is still three different metrics for all SA2s.

One way to look at this is simply the component with the largest contribution to population growth (or decline). Here is a map showing that for each SA2 in Melbourne:

You can see that international arrivals dominated population growth in most inner and middle suburbs, while internal arrivals dominated population growth in most outer suburbs. There are also some SA2s where births dominated (often low growth outer suburbs).

This representation is quite simplified, and doesn’t show what else might be happening. For example, here is a summary of the population changes in Sunshine for the year to June 2018:

Population change in Sunshine, year to June 2018

Overseas arrivals dominated population growth (net +313), but the otherwise hidden story here is that they were largely offset by net internal departures of 279.

So to add more detail to the analysis, I’ve created a slightly more detailed classification system that looks at the largest component and often a secondary component, as per the following table.

Explanation summaryLargest componentOther components
Growth – mostly births replacing localsNatural increaseNet internal departures more than 50 and net internal departures more than net overseas departures
Growth – mostly birthsNatural increaseNet internal and overseas departures of no more than 50
Growth – mostly immigrants replacing localsNet overseas arrivalsNet internal departures of at least 50 and/or natural decrease of at least 50.
Growth – mostly immigrationNet overseas arrivalsNet internal departures less than 50 (or net arrivals).
Growth – mostly internal arrivals replacing deathsNet internal arrivalsNet natural decrease of 50 or more, and bigger than net overseas departures
Growth – mostly internal arrivalsNet internal arrivalsNet internal arrivals greater than net overseas arrivals and natural increase

Decline – mostly internal departures

Net internal departures

Natural increase and net overseas arrivals both less than 50
Decline – mostly internal departures partly offset by births Net internal departuresNatural increase of at least 50, and natural increase larger than net overseas arrivals.
Decline – mostly internal departures partly offset by immigrantsNet internal departures Net overseas arrivals of at least 50, and net overseas arrivals larger than natural increase.
Decline – mostly deathsNatural decrease

There are no SA2s where net international departures was the major explanation for population change.

Here’s what these summary explanations look like in Melbourne (again, animated to show years to June 2017 and June 2018):

Technical notes: On these maps I’ve omitted SA2s where there was population change of less than 50 people, or where no components of population change were more than 1% of the population. Not all classifications are present on all maps.

You can now see that in most middle suburbs there has been a net exodus of locals, more than offset by net international arrivals (light purple). Also, many of the outer suburbs with low growth actually involve births offsetting internal departures (light blue).

Turning near-continuous data into discrete classifications is still slightly problematic. For example the summary explanations don’t tell you by how much one component was larger than the others. For example if there were 561 net international arrivals and 560 net internal arrivals, it would be classified as “Growth – mostly immigration”. Also, SA2s are not consistently sized across Australia (see: How is density changing in Australian cities?), so my threshold of 50 is not perfect. At the end of the post I provide a link to Tableau where you can inspect the data more closely for any part of Australia.

The inner city area of Melbourne was a little congested with data marks on the above map, so here is a map zoomed into inner and middle Melbourne:

You can see significant population growth in the Melbourne CBD and surrounding SA2s, particularly in 2017. The main explanation for inner city growth is international immigration, although internal arrivals came out on top in Southbank in 2018. Curiously, net internal arrivals were larger the international migration in Brunswick East in both years. And natural increase was dominant in Newport in the inner-west.

Zooming out to include the bigger regional centres of Victoria (note: many regional SA2s don’t show up because of very little population change):

In most regional Victorian cities, internal arrivals account for most of the population growth, although the net growth in “Shepparton – North” of +222 in 2017 and +152 in 2018 was mostly made up of international arrivals.
The only other SA2s to show international arrivals as the main explanation were in inner Geelong.

(I haven’t shown all of Victoria because few SA2s outside the above map had significant population change).

Heading up to Sydney, the picture is fairly similar to Melbourne:

Like Melbourne, internal arrivals accounted for most of the population growth in outer growth areas.

International immigration dominated the inner and middle suburbs in 2017, but in 2018 immigration eased off, and births became the main explanation for population growth in more SA2s.

The middle SA2s of Homebush Bay – Silverwater and Botany are noticeable exceptions to the pattern, dominated by internal arrivals.

Zooming out to New South Wales:

Central Newcastle, central Wollongong, Armidale and Griffith saw mostly international immigration led population growth. Most larger regional towns saw growth from internal arrivals, but further inland there was population decline – mostly from internal departures.

Next up, Brisbane:

Population growth in Brisbane’s inner suburbs is much more of a mix of internal and overseas arrivals. There are also more SA2s where births dominate population growth. There were also some SA2s with slight population decline for various reasons.

Zooming out to South East Queensland:

International arrivals dominated areas on the Gold Coast closer to the coastline, but much less so on the Sunshine Coast and in Toowoomba.

Looking at other parts of Queensland:

There was population decline in several areas, including Mackay and Mount Isa. Rockhampton and Cairns saw population growth mostly through internal arrivals. Townsville was dominated by internal arrivals in 2017, and births in 2018.

Airlie – Whitsundays stands out as having population growth mostly from international arrivals in both years.

Next up, Perth:

Like other cities, population growth in the outer suburbs was dominated by internal arrivals. There were a lot more SA2s showing population decline, and this was largely due to internal departures, partly offset by natural increases or net overseas arrivals.

Zooming out to Western Australia:

Population growth on the south-west coast was mostly dominated by internal arrivals, while in many other centres around the state there was population decline, mostly due to internal departures, however in many areas this was offset partly by births.

Next up, Adelaide:

Firstly, keep in mind that there has been relatively slow population growth in Adelaide (the scale is adjusted). The inner and middle suburbs mostly show population growth from international arrivals (often offsetting net internal departures), and the outer growth areas were again mostly about internal arrivals.

Zooming out to South Australia:

In 2017 there was considerable population decline in Whyalla and Port Augusta. Murray Bridge is another rare regional centre where population growth was largely driven by almost 400 overseas arrivals each year.

Next is Tasmania:

Note the circle size scale is even smaller. Overseas arrivals dominated population growth in central Hobart and Newman – Mayfield in Launceston (possibly related to university campuses), while internal migration dominated most other areas.

Here is Canberra:

International immigrants dominated population growth around Civic and the inner north. Internal arrivals dominated Kingston and Griffith and most outer growth areas. The outer suburbs saw a mixture of births and internal arrivals as the dominant explanation.

And finally, Darwin, which actually saw net population decline in the year to June 2018:

Palmerston South saw the largest population growth – mostly from internal arrivals. International arrivals were significant around Darwin city in 2017, but were much less significant in 2018. Most of the northern suburbs saw population decline in the year to June 2018.

Didn’t see your area, or want to explore further? You can view this data interactively in Tableau (you might want to filter by state as that will change the scale of circle sizes).

Where were international arrivals most significant?

I’ve calculated the ratio of international arrivals to population for each SA2. The SA2s where international arrivals in the year to June 2018 make up a significant portion of the 2018 population are all near universities and/or CBDs. Namely:

  • Melbourne CBD and neighbouring Carlton at 20% (Melbourne Uni, RMIT, and others)
  • Brisbane CBD at 18% and neighbouring Spring Hill at 20% (QUT and others)
  • Clayton in Melbourne at 18% (Monash Uni)
  • Sydney – Haymarket – The Rocks at 15% and neighbouring Pyrmont – Ultimo at 17% (near to UTS, Sydney Uni, and various others)
  • Acton (ACT) at 17% (ANU)
  • Kingsford (in Sydney) at 16% (UNSW)
  • St Lucia (Brisbane) at 15% (UQ)

I hope you’ve found this interesting. In a future post I might look at internal migration origin-destination flows, including how people are moving within and between cities.