Update on Australian transport trends (December 2022)

Sat 31 December, 2022

It’s that time of year again when BITRE release their annual yearbook chock full of numbers, and this post aims to turn them into useful information. It’s also a prompter for me to update my feeds of other transport metrics and pull together this post covering the latest trends in licence ownership, motor vehicle ownership, transport emissions, vehicle kilometres, passenger kilometres, freight volumes, and transport pricing.

I’ve been putting out similar posts in past years, and commentary in this post will mostly be around recent year trends. See other similar posts for a little more discussion around historical trends (January 2022, December 2020, December 2019, December 2018).

Driver’s licence ownership

Here is motor vehicle licence ownership for people aged 15+ back to 1971 (I’d use 16+ but age by single-year data is only available at a state level back to 1982). Note this includes any form of driver’s licence including learner’s permits.

Technical note: the ownership rate is calculated as the sum of car, motorbike and truck licenses – including learner and probationary licences, divided by population. Some people have more than one driver’s licence so it’s likely to be an over-estimate of the proportion of the population with any licence.

Overall the trend has been a flattening of licence ownership rates, and indeed Victoria was showing declining licence ownership before the pandemic. The ACT and Northern Territory had much higher rates of licence ownership in the 1970s compared to other states. But then the Northern Territory has maintained lower rates of licence ownership than most other states since the 1990s. The ACT showed very high rates of licence ownership around 2009 to 2017 – not sure if this is real or an artefact of the imperfect data (eg counting people with multiple licences).

Most states saw an uptick in 2021 with the notable exception of Western Australia – a state that was largely COVID-free until early 2022 so any COVID-avoidance incentive to get a driver’s licence might not have been very strong. Licence ownership rates in Queensland and Victoria have somewhat levelled out between 2021 and 2022, perhaps reflecting a return of international arrivals and the end of COVID lockdowns.

Here’s licence ownership by age band for Australia as a whole (to June 2021):

In 2020 and 2021 there was an uptick in ownership for people aged 16 to 29 in particular. Let’s look at the various age bands across the states:

There are some interesting recent trends for people aged 16-19. Victoria saw a big drop in 2020 but then some big increases in 2021 and 2022. South Australia and New South Wales have also seen big increases in recent years.

There were even bigger increases for 20-24 year olds following the start of the pandemic, except Western Australia and the Northern Territory (states that largely avoided COVID in 2021).

Ages 25-29 were similar:

So why have licence ownership rates increased for younger adults? Is it mode shift away from public transport to avoid the risk of COVID infection on public transport? Or is it because non-licence holders left the country?

South Australia and New South Wales publish quarterly licencing data by age band which allows us to see the impact of the pandemic more closely. I’ve combined this with ABS quarterly population data to calculate quarterly licence ownership rates:

South Australia has less historical data published:

The population aged 20-24 declined after March 2019 in both New South Wales and South Australia – a year before the pandemic hit. Then both states saw a more rapid decline after March 2020 – the onset of the pandemic.

However the number of people in this age band with a licence only increased slightly – in line with pre-pandemic trends. That is, the licence ownership rate increased sharply primarily because there was a net loss of non-licence holders.

Here’s a look at Australia’s population by age band:

There are some fairly smooth trends over time in all age bands, but then from 2020 there were some sudden shifts, particularly for age bands 16-19, 20-24, 25-59 and to lesser extent 30-39.

A plausible explanation is that international students and other non-permanent residents left Australia – many could not attend classes and were encouraged to leave Australia by the government of the day. These departures were not replaced by new arrivals as the international borders were essentially closed. Indeed once the borders reopened in early 2022, there was a sharp increase in non-licence holders in New South Wales that sent the motor vehicle licence ownership rate down sharply in March 2022 (June 2022 data has not been published at the time of writing).

Other data shows a sharp fall in the number of international students in Australia between 2019 and 2020, particularly in NSW, Victoria and Queensland (more recent student numbers unfortunately not available at the time of writing):

And there was a dramatic shift to net outbound overseas migration from the June quarter of 2020:

In previous posts (see Why are young adults more likely to use public transport? (an exploration of mode shares by age – part 3) I’ve established that recent immigrants skew to the younger adult ages as Australia generally attracts international students and skilled migrants, which also fits with the hypothesis that there was a great exodus of young adults who didn’t have a driver’s licence.

[Side note: the first quarter of 2022 represented a new record for international migration into Australia as the borders re-opened – almost 98k people.]

It’s entirely plausible that long-time residents also increased their rate of licence ownership during the pandemic, but I think the most likely major explanation is the departure of international students and temporary residents. And so I expect the return of international migration will result in lower licence ownership, car ownership, and increased public transport mode share in 2023.

For completeness, here are licence ownership rate charts for other age groups:

There appear to be a few suspicious outlier data points for the Northern Territory (2019) and South Australia (2016).

To get a better understanding of recent trends, here are quarterly licence ownership rates by age band for New South Wales since mid 2018:

You can see the rise – and more recent fall – in licence ownership rates for the age bands 20-24 and 25-29. There was also a sharp fall for those aged 16-19 in September 2021, possibly due to Sydney entering a long COVID lockdown in the winter of 2021 (perhaps learners permits were not renewed or people didn’t bother applying for them if they could not take lessons). 30-34 year olds showed a small rise in licence ownership from the start of the pandemic and this seems to have been sustained, which might reflect some mode shift to avoid infection risk.

Here’s the same quarterly data for South Australia:

Licence ownership rates rose strongly for those aged 16-34, although there was an initial dip for those aged 16-19 in June-September 2020 around the start of the pandemic. Perhaps it has remained high because international students have not yet returned in great numbers to Adelaide, and/or because of a permanent mode shift towards private transport?

For completeness, here are motor cycle licence ownership rates:

Motorcycle licence ownership has been trending up slightly in New South Wales and Victoria, and slightly down in Queensland, South Australia, Norther Territory and Western Australia.

Car ownership

Thankfully BITRE has picked up after the ABS terminated it’s Motor Vehicle Census, and are now producing a new annual report Motor Vehicle Australia. They’ve tried to replicate the ABS methodology, but inevitably have come up with slightly different numbers in different states for different vehicle types for 2021. So the following charts will show two values for January 2021 – both the ABS and BITRE figures so you can see the reset more clearly. I suggest focus on the gradient of the lines between surveys and try to ignore the step change in 2021.

Between January 2020 and January 2022 most states show an upwards trend in motor vehicles per population aged 18-84 (an imperfect approximation of the driving age population).

However when you look at the stock of cars per state, there was not a significant uptick in the total number of cars – indeed Victoria saw an almost flattening of total motor vehicles between January 2020 and January 2021:

Again, a highly plausible explanation is that non-driving (and non-licence holding) residents departed Australia while long-term residents largely continued their background trends in motor vehicle ownership. We might therefore see a decline in motor vehicle ownership rates in the January 2023 survey with the return of overseas immigration.

Transport Emissions

Australia’s transport emissions have been reduced by COVID lockdowns over the last couple of years but have more recently bounded back:

The above chart showing rolling 12 months emissions which washed out the lockdown period. The next chart shows seasonally-adjusted quarterly data to get around the rolling 12 month averaging – with the September 2022 quarter close to 2019 levels:

Here are Australian transport emissions since 1975:

And in more detail since 1990:

The next chart shows the more recent growth trends by sector:

Aviation emissions saw the biggest decline from the pandemic but were bouncing back in 2021-22. Car and bus emissions have declined in line with pandemic lockdowns whilst most other modes have continued to see growth in emissions.

Here are per-capita emissions by transport sector (note: log scale used on Y-axis):

Truck and light commercial vehicle emissions per capita have continued to grow while many other modes have been declining, including a continued reduction in car emissions per capita since around 2004.

Next up, emissions intensity (per vehicle kilometre):

Curiously the figures suggest a sudden drop in bus emissions per km in 2022, but I am not sure this is plausible as electric buses are still only being rolled out in small numbers. There was also an unexpected dip in emissions per km in 2015 which jumped back up in 2016. The 2015 dip in bus emissions per km is primarily a product of a dip in BITRE’s estimated bus emissions and not bus vehicle kilometres travelled, which is a hard to explain (this bus emissions dip is not seen in AGEIS estimates). I suspect this may be an artefact of BITRE methodological issues.

Emissions per passenger-km can also be estimated:

Car emissions have continued a slow decline, but bus and aviation emissions per passenger km increased in 2021, presumably as the pandemic reduced average occupancy of these modes.

Vehicle kilometres travelled

Vehicle and passenger kilometre figures have been significantly impacted by COVID lockdowns in 2020 and 2021, and so the financial year figures are a mix of restricted and unrestricted travel periods. Accordingly we cannot readily infer new trends from this data, and it should be interpreted with caution.

Total vehicle kms for 2021-22 were lower than 2019-20 and 2020-21:

As per emissions, the biggest declines were in cars, motorcycles, and buses:

Light commercial vehicles and trucks have shown the biggest increase since 1990.

Here’s the view on a per-capita basis:

Vehicle kilometres per capita peaked around 2004-05 and were starting to flatline in some states before the pandemic hit with obvious impacts.

Here is the same data for capital cities (capital city population data comes out only once a year with some delay, so most city data points are only up to financial year 2020-21).

Canberra has dramatically reduced vehicle kilometres per capita since around 2014 leaving Brisbane as the top city.

Once again BITRE have kindly supplied me data on estimated car vehicle kilometres for capital cities that is not included in the yearbook:

Canberra is still on top for car kilometres per person but this rate has been reducing strongly over recently years.

Passenger kilometres travelled

Here are passenger kilometres travelled overall (log scale):

The pandemic had the biggest impact on rail, bus, and aviation passenger kilometres.

Here is the same on a per-capita basis which shows very similar patterns (also a log scale):

Curiously aviation passenger kilometres per capita peaked in 2014, well before the pandemic. Rail passenger kilometres per capita in 2019 were at the highest level since 1975 before the pandemic hit. Only air travel has rebounded on a financial year basis.

Here’s total car passenger kilometres for capital cities:

Melbourne, Sydney, and Canberra were impacted by extensive lockdowns in 2021-22, while the other cities were mostly lockdown free. However the then-unprecedented large wave of COVID cases in the summer of 2021-22 may have led to voluntarily suppressed travel behaviour across many cities.

Here’s car passenger kilometres per capita (again only to 2020-21 for most cities):

It’s hard to estimate any post-COVID trends based on this annual data. However, I have been processing VicRoads traffic signal count data which gives some indication about more recent traffic volumes in Melbourne. The following chart shows the change from 2019 median signalised intersection traffic count volumes per week. I’ve deliberately locked the scale as -20% to +10% as I want to focus on the difference between 2019 and 2022 traffic, and so the 2020 and 2021 lines go off the scale during lockdowns.

It’s very interesting that volumes in late 2022 were about 5% lower than 2019 levels on weekdays (a bit higher on weekends although there’s no such thing as a normal weekend).

And if you look at the time of day profile for Melbourne (below), the biggest reductions have been in the early AM peak, and evenings, while there have been increases during the AM and PM school peaks (which might be a response to COVID infection fear and/or because parents working from home can more easily drive their children to and from school):

Rail Passenger travel

The pandemic has put a large dent in rail passenger kilometres travelled, and these are likely to remain below 2019 for some time as new working-from-home behaviours stick following the pandemic:

Melbourne saw a slight increase in 2021-22, but this was probably more a product of the how long the city was in lockdown during financial years 2020-21 and 2021-22. Sydney saw a reduction in 2021-22 probably because there was little in the way of lockdowns in 2020-21.

Here’s rail passenger kms per capita (again, only up to 2020-21):

Bus passenger kilometres have reduced significantly with the pandemic:

Including on a per-capita basis:

I would expect to see these figure bounce back up as there are unlikely to be any lockdowns during 2022-23.

It would appear that the surge in Darwin bus use due to a major LNG project may have ended.

Mode split

It’s possible to calculate “mass transit” mode share using the passenger kilometres estimates from BITRE (note: it’s not possible to readily differentiate public and private bus travel):

Mass transit mode shares have taken a large dive during the pandemic, and I expect this to be strongly associated with COVID lockdowns where many people – especially central city workers – worked from home. It’s still difficult to know to what extent this is people switching travel modes for ongoing trips, to and what extent it is public transport trips being replaced by staying home. I hope to have more to offer on this subject in an upcoming blog post.

Transport for New South Wales conducts a rolling household travel survey, although it was suspended during COVID lockdowns in 2020 and 2021. Estimated total person trips and kilometres by mode are reported, and from this we can get an idea around mode split (including non-motorised modes):

On this data, the public transport mode share of person kilometres travelled is much higher than that derived from the BITRE data, with a peaking of around 20% before the pandemic.

Unlike Victoria, New South Wales unfortunately does not provide any detailed household travel survey data, which means it is not possible to perfectly calculate public transport mode share (ferry and light rail were bundled with “Other” pre 2020), and it’s also not possible to calculate mode share by trip purpose. All this and more is possible with Victorian published data, but unfortunately post-COVID data will not be published until late 2024.

Freight

This data shows a dramatic inflection point in freight volume growth in 2019, with a lack of growth in rail volumes and a decline in coastal shipping. Much of this volume is bulk commodities, and so the trends will likely be explained by changes in commodity markets, which I won’t try to unpack.

Non-bulk freight volumes are around a quarter of total freight volume, and are arguably more contestable between modes:

2022 saw a sudden flatlining in non-bulk freight volumes, with road increased market share to 80%, seemingly mostly at the expense of coastal shipping:

Air freight tonnages are tiny in the whole scheme of things so you cannot easily see them on the charts.

Transport Costs

The final category for this post is the real cost of transport from a individual perspective. Here are headline real costs (relative to CPI) for Australia, using Q2 ABS Consumer Price Index data up to June 2022:

Technical note: Private motoring is a combination of factors, including motor vehicle retail prices and automotive fuel. Urban transport fares include public transport as well as taxi/ride-share (which possibly move quite independently, which is a little frustrating).

The cost of private motoring mostly declined in real terms from around 2008 to 2020, followed by sharp increases in 2021 and 2022 in line with the rapidly rising cost of automotive fuel. The real cost of motor vehicles has plummeted since 1996, although it bottomed out in 2018.

Urban transport fares (a category which unfortunately blends public transport and taxis/rideshare) have increased faster than CPI since the late 1970s, although they were flat in real terms between 2015 and 2020, then dropped in 2021 and 2022 in real terms – possibly as they had not yet been adjusted to reflect the recent surge in inflation.

The above chart shows a weighted average of capital cities, which washes out patterns in individual cities. Here’s a breakdown of the change in real cost of private motoring and urban transport fares since 1973 by city (note different Y-axis scales):

Technical note: I suspect there is some issue with the urban transport fares figure for Canberra in June 2019. The index values for March, June, and September 2019 were 116.3, 102.0, and 118.4 respectively.

Urban transport fares have grown the most in Brisbane, Perth, and Canberra – relative to 1973. However all cities have shown a drop in the real cost of urban transport fares in June 2022 – as discussed above.

If you choose a different base year you get a different chart:

What’s most relevant is the relative change between years – eg. you can see Brisbane’s experiment with high urban transport fare growth between 2009 and 2017 in both charts.

Melbourne recorded a sharp drop in urban transport fares in 2015, which coincided with the capping of zone 1+2 fares at zone 1 prices.

What does all this mean for post-pandemic transport trends?

I also tackled this question a year ago and my thoughts haven’t changed significantly.

One thing that has become clearer is that the increase in motor vehicle licence ownership and car ownership is very likely related to the lack of recent international immigrants during the pandemic. Therefore the reopening of international borders is likely to push these rates down once more across 2022 and 2023, although they may or may not return to pre-pandemic levels. In turn, this will probably increase public transport patronage and mode share, although it is still likely to remain subdued following the wide scale acceptance and adoption of working from home, particularly for central city workers.

A key question for me is the extent to which commuter trips have shifted from public to private transport, as opposed to simply disappearing as many more people work from home. I’ll have more to say on this soon in an upcoming post about 2021 census journey to work data.


Update on Australian transport trends – January 2022

Sun 23 January, 2022

Once again, the good folks at the Bureau of Infrastructure, Transport and Regional Economics (BITRE) have published their annual yearbook chock full of data just before Christmas. This annual post aims to turn the numbers into insights about transport trends in Australia.

I’ll cover vehicle kilometres, passenger kilometres, mode shares, car ownership, driver’s licence ownership, greenhouse gas emissions, and transport costs. This year there’s also a new section of freight volumes and mode shares.

While most data series are available up until 2020-21, at the time of writing there were only June 2021 estimates of population for states and territories, not cities. So most charts for cities will end at 2019-20, the financial year in which the COVID19 pandemic had significant impacts for only the last third (i.e. from March 2020).

I will finish the post with some thoughts about what the data suggests for post-pandemic transport trends. Settle in, there are quite a few charts!

Vehicle kilometres travelled

Total vehicle kms travelled in Australia increased slightly in 2020-21, after a small but significant fall in 2019-20 due to the pandemic.

Here’s the percentage growth by vehicle type since 1971:

Light commercial vehicles have seen the largest growth overall since 1971, followed by buses (mostly in the 1980s), with motorcyles having the least growth.

In percentage terms, buses saw the largest decline in vkms with the pandemic (I’m guessing largely related to charter and tour operations), but there were also substantial declines for cars and motorcycles as people endured lockdowns and borders were closed. There was no clear impact on trucks and only a small impact on light commercial vehicles. All vehicle types except buses rose in total vehicle kms in 2020-21.

Vehicle kilometres travelled per capita

Here’s a view at the state and national level:

Vehicle kms per capita peaked in all states in 2004 or 2005 and have declined since then, with some variation between states.

Vehicle kms per capita were highest in Queensland and Western Australia, and lowest in the Northern Territory, followed by New South Wales, South Australia and the ACT – at least until the COVID19 pandemic.

All states saw a big reduction in 2019-20 with the pandemic (although less so in the NT which I understand didn’t lock down), and things bounced up in 2020-21 in all states except Victoria – no doubt due to a long lockdown in the second half of calendar 2020 due to a second wave of COVID19.

Similar patterns were seen in cities (data for most cities is only until 2019-20). Before the pandemic, Melbourne and Sydney showed the biggest declines in vehicle kms per capita.

BITRE have been kind enough to supply me with estimates of car vehicle kilometres for cities (not yet part of the yearbook data), which show similar patterns:

Passenger kilometres travelled

Firstly here are passenger kilometres travelled at the national level – and note I have used a log-scale on the Y-axis.

The COVID19 pandemic brought massive reductions in rail, bus, and air passenger kilometres travelled, and a smaller reduction in car passenger kilometres. This will likely reflect a significant proportion of the workforce shifting to working at home, an aversion to shared transport, and the closure of interstate borders during the pandemic.

Prior to the pandemic, there was a massive increase in air travel between the mid-1980s and the early 2010s, and rail saw strong growth from 2005.

Here’s passenger kms per capita:

Car passenger travel per capita peaked in 2004, and domestic air travel per capita peaked around 2014. Bus travel per capita peaked in 1990, the same year aviation was significantly disrupted by a pilot’s strike. Rail passenger travel was growing strongly until the pandemic hit.

The next sections will look at passenger kms (total and per capita) for capital cities, by mode.

Car passenger travel

After a long run of strong growth, the pandemic brought declines in car travel in all cities in 2019-20. There was a bounce back in 2020-21, except Melbourne which saw a further decline to 17% below 2019-20 levels (roughly equal to 2003 levels), no doubt due to COVID19 lockdowns. 2020-21 car passenger kms in Perth, Adelaide, and Brisbane were above 2019-20 volumes, suggesting a snap back to the growth trend.

All cities saw a significant decline in car passenger kms per capita in 2019-20, due to the pandemic.

The longer-term trend shows peaking of car use in 2004 or 2005 in all cities.

Rail passenger travel

There were massive reductions in (heavy) rail passenger kms in both 2019-20 and 2020-21 with the COVID19 pandemic, as many central city workers shifted to working from home and cities went into lockdown.

Just before the pandemic, Sydney’s rail passenger kms were rocketing up. Sydney’s rail network carries significantly larger volumes than Melbourne despite having almost the same population.

Before the pandemic, rail passenger kms per capita were increasing in Sydney, declining in Melbourne, and increased slightly in other rail cities in 2018-19. Things obviously changed with the pandemic in 2019-20.

Here is growth in rail passenger kms since 2010:

Pre-pandemic, Adelaide and Sydney has the strongest growth relative to 2010, while Brisbane had the least. However the chart would look quite different with a different base year (eg Perth would look worst on a base year of 2013). Adelaide train patronage was significantly impacted in the period 2011-2014 by electrification and other upgrade works that involved extended line closures.

Bus passenger travel

Sydney has the highest bus use of all Australian cities. It’s worth noting that Melbourne is unique in that trams dominate inner city radial street-based public transport, resulting in a lower rate of bus use compared to other cities.

All cities saw big bus patronage reductions with the pandemic, with Melbourne bus usage falling below than of Brisbane in 2020-21.

In per capita terms, Darwin has seen a massive increase in bus use due to a large staff bus network being created for a major LNG project just outside of Darwin.

Sydney overtook Brisbane for bus use per capita in 2017-18, perhaps due to some service investment, network reform, and/or reduced transfer penalties from fare reform. Brisbane saw massive increases in bus usage between 2004 and 2012, likely related to the expansion of the busway network and some service upgrades (including “BUZ” routes), which might then have been eroded by significant fare hikes.

Growth in bus passenger kms since 2010 shows these patterns in another way:

Pre-pandemic, Sydney and Canberra were showing particularly strong growth. Perth peaked in 2014 – which might be partly explained by a decentralisation of employment (see: What might explain journey to work mode shifts in Australia’s largest cities? (2006-2016)).

Again, these types of charts would look quite different if a different reference year was applied.

Light rail passenger travel

Melbourne has by far the largest light rail network, so little surprise it has the highest passenger kms. None of these light rail networks are designed to serve the entire city, so we need to be cautious comparing cities, and I won’t provide a per capita chart.

Despite the COVID19 pandemic, Sydney saw an increase in light rail use in 2019-2020, which would reflect the opening of the new south-eastern lines to Randwick and Kingsford in December 2019.

Motorcycle passenger travel

Motorcycle travel had a dip in the 1990s on these figures, then picked up strongly in the early 2000s. The patterns in 2019-2021 are similar to car passenger travel.

On this data, Melbourne bucked the trend of other cities in 2006 and started a decline in motorcycle travel. However all these figures are estimates only, and I would not be surprised if there were some “broad” assumptions behind the estimates, as motorcycle travel doesn’t usually get a lot of measurement attention, and most of the cities are estimated to have remarkably similar trends.

Mass transit mode share of passenger kilometres

It is possible to calculate the ratio of “mass” transit passenger kms (rail, light rail, ferry, and bus) against total passenger kms in cities, which essentially provides a mode share. Note however that this will include estimates of private bus travel, so it’s not exactly public transport mode share, but probably not far off.

The pandemic has led to significant falls in mass transit mode share in all cities, with perhaps the largest reduction in Melbourne (again, likely related to the second wave lockdown in 2020-21).

As I’ve shown on this blog several times, a significant portion of public transport travel is around journeys to work and education in city centres, a trip type that became a lot less frequent during the pandemic as people work and learn from home. The removal of these trips from total travel has undoubtedly shifted the overall mode share calculation.

What’s not yet clear to me is the extent to which trips not suppressed by the pandemic might have shifted from public to private transport, and whether these trips might shift back to public transport “after” the pandemic (assuming there comes a time when there is no longer heightened infection fear).

Car ownership

The following charts use vehicle count data from the ABS Motor Vehicle Census, with January 2021 unfortunately the last census taken (although hopefully Austroads take over in 2022). I’ve calculated per capita car ownership using interpolation from the most recent ABS population estimates at the time of writing.

Not everyone is of driving age, so I usually also look at motor vehicles per 100 residents aged 18-84, as an approximate representation of people of driving age:

Here’s a closer look at the last few decades:

Motor vehicle ownership has risen considerably since the survey began. However from around 2017 until the pandemic it actually decreased in most Australian states and territories (Tasmania an exception).

There has been a small but significant uptick in motor vehicle ownership in January 2021 in all states. As I mentioned in my recent blog post on motor vehicle ownership by age, I see two likely main reasons for this:

  • A lack of recent international immigrants during the pandemic – who generally have very low rates of motor vehicle ownership in the first years in Australia, and are skewed towards young adult age bands which themselves also have lower rates of motor vehicle ownership in general.
  • A mode shift from public transport, as people want to avoid the risk of catching COVID19 on public transport (whether this risk is large or small). However with working/learning from home, it’s hard to know how much of this is mode shift of continued trips, versus trips of certain modes not being made as often.

Motorcycle ownership

This chart shows a slightly different pattern to that of motorcycle passenger kilometres per capita in cities (above). Ownership and usage bottomed out around the 1990s or 2000s (depending on the state/city). However ownership has risen in most states since then, but usage apparently peaked around 2009 in most cities. This perhaps suggests motorcycles are now more a recreational – rather than everyday – vehicle choice. But I really don’t follow motorcycle trends closely so cannot be too sure.

Driver’s licence ownership

Thanks to BITRE Information Sheet 84, the BITRE Yearbook 2021, and some useful state government websites (NSWSAQld), here is motor vehicle licence ownership per 100 persons (of any age) from June 1971 to June 2020 or June 2021 (only some state agencies have published 2021 data at the time of writing):

Technical note: the ownership rate is calculated as the sum of car, motorbike and truck licenses – including learner and probationary licences, divided by population. Some people have more than one driver’s licence so it’s likely to be an over-estimate of the proportion of the population with any licence.

There’s been slowing growth over time, although Victoria has actually seen slow decline since 2011, and the ACT peaked in 2016.

However in both states with 2021 data (South Australia and New South Wales) there was a significant uptick in 2021 of more than 1 licence per 100 people. This is likely related to the pandemic – either more people opting for a driver’s licence to shift away from shared modes, and/or a lack of recent immigrants (many were young adults) who usually take some time to get their licence. I would not be surprised to see similar trends in other states when data is made available.

Here’s a breakdown by age bands for Australia as a whole:

Licencing rates had been increasing over time for those aged over 40 (most strongly for those aged over 70) up until 2019, but that changed for the 60-69 and 70-79 bands in 2020.

Licencing rates had been declining for those aged under 40 until 2019, although there was a notable uptick in licence ownership for 16-19 year-olds in 2018, and increases in 2020 for those aged 20-29.

However the above charts show national trends that can wash out variations at the state level. So let’s break it down for states per age band:

Licence ownership rates for teenagers has been declining significantly in Victoria, with a large fall in 2020. There were also declines in 2020 in Tasmania, South Australia and Western Australia. NSW had a significant increase in 2020, and even more so in 2021.

Note: the differences between states for this age band at least partly reflect different minimum ages for licencing.

The largest states of Victoria and New South Wales were trending downwards until 2019, but have since shot back up, quite spectacularly in NSW. This might partly reflect the absence of new immigrants who generally have low levels of driver’s licence ownership. There may also be issues with ABS’s population estimates in the unprecedented pandemic.

All states showed an increase in 2020 except the Northern Territory.

Victoria and New South Wales did have a downwards trend in this age band, but that turned around in 2020. Tasmania and the ACT have shot up since 2017.

Licence ownership for those in their 30s had been declining in NSW, SA, WA and Victoria up to 2020, with NSW again showing an uptick in 2021. Tasmania has seen strong growth in recent years.

Licence ownership for those in their 40s was declining slightly in SA, Victoria, and WA until 2020, but was still very high. NSW had a smaller uptick in this age band in 2021, compared to younger age bands.

Licence ownership for those in their 50s was declining slightly until 2020 in most states (except Queensland and Tasmania). NSW had a relatively small uptick in 2021 compared to younger age bands.

Licence ownership for those in their 60s was slowly growing in most states until 2019 but then fell in 2020 with the pandemic. The 2021 uptick in NSW did not fully recover from the drop in 2020.

Licencing rates for those in their 70s have been growing strongly in all states (except recently in WA). NSW saw a dip in 2020, but bounced back in 2021. I suspect a data error for NT in 2019.

Licencing rates for those over 80 were increasing in most states to 2020, and NSW only had a small dip in 2020.

New South Wales is the first state to give us insights into the impact of the pandemic, so here is a look at the licencing trends per age band in that state:

You can see more clearly the big growth for those aged under 30 (people who generally used public transport more often before the pandemic), whilst older age groups (60+) saw a temporary decline in licence ownership in 2020 with a bounce-back in 2021.

See also an older post on driver’s licence ownership for more detailed analysis.

For completeness, here is a chart showing motorcycle full licence ownership rates:

Queensland has two types of motorcycle licence and I suspect many people hold both, which might explain a licence ownership rate being so much higher than other states.

Freight

There has been a massive increase in domestic freight volumes since the 1970s, and according to this data, rail has accounted for most of this growth in recent decades. However keep in mind that a majority of these freight-kilometres are bulk commodities (such as iron ore, coal, and grain) which are ideally suited to energy-efficient rail and coastal shipping. Indeed in 2020-21, road transport only moved 11% of bulk goods, and 93% of rail freight movements were bulk goods.

Here are the volumes for non-bulk freight movements, which are arguably more contestable:

And non-bulk freight mode shares:

Road transport dominates non-bulk freight movements in Australia, while air freight is trivial in terms of volume (but probably non-trivial in terms of value). Coastal shipping’s mode share fell significantly in the late 1970s and early 1980s but has remained mostly around 4-6% since then.

Rail transport’s mode share of freight movements declined in the 1970s and 1980s, had a small peak of 22% in 2006, but has fallen back to 16% in 2021. That’s despite the estimated rail freight volume in 2020-21 being the highest of any year reported – it’s just that road volumes have grown even more.

Transport greenhouse gas emissions

Total emissions

According to the latest quarterly figures, Australia’s domestic non-electric transport emissions peaked in around 2018, and had been slightly declining ahead of the COVID19 pandemic.

The above chart showing rolling 12-month figures, which hides the big and sudden changes in recent quarters. So here’s a look at seasonally-adjusted transport emissions by quarter:

Data available at the time of writing was to June 2021, a quarter with fewer impacts from the pandemic (there were some lockdowns in Melbourne). As pandemic conditions eased (before the COVID19 delta wave in the second half of 2021), transport emissions shot back up to near-2019 levels. I expect we will see a decline in the September 2021 data as Victoria and NSW experienced COVID lockdowns. Reductions in Australia’s transport emissions so far appear to be only temporary.

The next chart shows a long term trend of rapid rising annual transport emissions (according to BITRE data):

A more detailed breakdown of road transport emissions is available from 1990 onwards:

To better see the trends per mode, here is net growth since 1975:

Domestic aviation emissions have seen the biggest reduction from the COVID19 pandemic, followed by road emissions. Rail and marine emissions have also shown a decline in the last two years, however I cannot be certain to what extent this is due to the pandemic.

Road emissions grew steadily until 2019, while aviation emissions took off around 1991 (pardon the pun). You can see that 1990 saw a lull in aviation emissions, probably due to the pilots strike around that time.

In the years before the pandemic, non-electric rail emissions grew strongly, mostly driven by increases in bulk freight volumes (as discussed above). I suspect the small decline in rail emissions in recent years is unlikely to be related to diesel passenger trains (most of which have continued to run to normal timetables during the pandemic).

The next chart shows growth by sector since 1990 (including a more detailed breakdown of road transport):

This data suggests the pandemic has had no impact on truck emissions, but has reduced car, bus, and light commercial vehicle emissions.

Per capita emissions

While per capita emissions aren’t directly relevant to climate change impacts, it is interested to look at whether emissions growth has decoupled from population growth for different modes. Note I’ve used a log scale on the Y-axis.

Per capita car emissions for all modes except trucks have been in decline in recent years – and more so with the pandemic. Aviation and bus emissions per capita have fallen the most with the pandemic.

Emissions intensity

We can also calculate emissions per vehicle kms travelled. I’ve labelled the value estimates for 2021 (note again a log scale on the Y axis).

There has been a slow decline in emissions per km for cars, motorcycles and buses, while light commercial vehicles remain flat, and emissions per truck km have increased (although average truck loads have also increased over time).

I’d like to be able to calculate freight emissions intensity per tonne-kilometre by mode, but it’s hard to do that sensibly with the available data (eg rail emissions are not split by freight and passenger, and many flights carry both passengers and freight).

Transport costs

The final category for this post is the real cost of transport from a individual perspective. Here are headline real costs (relative to CPI) for Australia, using ABS data:

Technical note: Private motoring is a combination of factors, including motor vehicle retail prices and automotive fuel. Urban transport fares include public transport as well as taxi/ride-share (which possibly move quite independently, which is a little frustrating).

The cost of private motoring has tracked relatively close to CPI, although it seems to be trending down since 2008, probably largely related to reductions in the price of automotive fuel (which peaked in 2008). The real cost of motor vehicles has plummeted since 1996, although it may have bottomed out in 2018.

Urban transport fares have increased faster than CPI since the late 1970s, although they have grown slower than CPI (on aggregate) since 2013.

However the above chart shows a weighted average of capital cities, which washes out patterns in individual cities.

Here’s a breakdown of the change in real cost of private motoring and urban transport fares since 1973 by city (note different Y-axis scales):

Technical note: I suspect there is some issue with the urban transport fares figure for Canberra in June 2019. The index values for March, June, and September 2019 were 116.3, 102.0, and 118.4 respectively.

Urban transport fares have grown the most in Brisbane, Perth and Canberra – relative to 1973.

However if you choose a different base year you get a different chart:

What’s most relevant is the relative change between years – eg. you can see Brisbane’s experiment with high urban transport fare growth between 2009 and 2017 in both charts.

Melbourne recorded a drop in urban transport fares in 2015, which coincided with the capping of zone 1+2 fares at zone 1 prices.

What do these trends suggest for post-pandemic transport?

There are some emerging trends in the data above that suggest a shift towards private transport:

  • An uptick in driver’s licence ownership in 2021 evidenced in NSW and South Australia, and likely replicated in other states (data not yet available). The increases were sharpest for young adults, normally a natural market for public transport. Motor vehicle licence ownership has a strong relationship with mode choice, and even if/when the fear of infection on public transport is gone, there may be some people who stick to habits formed during the pandemic. See also: Why are younger adults more likely to use public transport? (an exploration of mode shares by age – part 2)
  • Likewise, an uptick in motor vehicle ownership in all states in 2021 could also see some people sticking to new driving habits formed during the pandemic. Again, see Why are younger adults more likely to use public transport? (an exploration of mode shares by age – part 2)
  • The biggest reductions in transport volumes were seen in public transport, no doubt strongly associated with office workers switching to working from home during the pandemic (a large portion of whom work in CBDs). They will likely not return to working in the office as frequently as they did before the pandemic, and this may see future public transport patronage and mode share lower than pre-pandemic projections. In other analysis (not yet published here sorry) I’ve found high rates of pre-pandemic public transport use amongst occupations that are most likely amenable to working from home.

However a shift to private transport will hit headwinds if traffic congestion rises (a highly effective form of demand management) and/or car parking prices increase.

Also, the resumption of international migration will probably see an influx of people who are less likely to own and use private vehicles, at least in their early years of living in Australia (see: Why were recent immigrants to Melbourne more likely to use public transport to get to work?) – although this may depend on their perspectives of infection risk.

I think a key issue will be whether a heightened fear of infection can ultimately be removed on public transport, which would enable people to switch back to using public transport, or resume making trips where public transport is/was the “default” mode for many (eg commuting to CBDs).

A sustained mode shift to private transport following the pandemic could have significant consequences for increasing traffic congestion and transport emissions (not to mention many other issues).


Update on Australian transport trends (December 2020)

Sun 3 January, 2021

Each year, just before Christmas, the good folks at the Australian Bureau of Infrastructure, Transport, and Regional Economics (BITRE) publish a mountain of data in their Australian Infrastructure Statistics Yearbook. This post aims to turn those numbers (and some other data sources) into useful knowledge – with a focus on vehicle kilometres travelled, passenger kilometres travelled, mode shares, car ownership, driver’s licence ownership, greenhouse gas emissions, and transport costs.

Of course the world of transport changed significantly in 2020, with suppressed movement from around mid March, as the COVID19 pandemic led to movement restrictions across Australia. Most of the following data is for financial years, so you will see some impacts where data is available for financial year 2019-20.

Vehicle kilometres travelled

Total vehicle kilometres travelled has been increasing most years, until 2019-20, when it fell from 264 to 247 billion kilometres.

Here’s the growth by vehicle type since 1971:

Light commercial vehicle kilometres have grown the fastest, curiously followed by buses (although much of that growth was in the 1980s). In 2019-2020, there were noticeable reductions for most vehicle types, except trucks.

Car kilometre growth has slowed significantly since 2004, and actually peaked in 2016-17 according to BITRE estimates.

On a per capita basis car use peaked in 2004, with a general decline since then. Here’s the Australian trend (in grey) as well as city level estimates until 2015 (from BITRE Information Sheet 74):

Technical note: “Australia” lines in these charts represent data points for the entire country (including areas outside capital cities).

Darwin has the lowest average which might reflect the small size of the city. The blip in 1975 is related to a significant population exodus after Cyclone Tracey caused significant destruction in late 1974 (the vehicle km estimate might be on the high side).

Canberra, the most car dependent capital city, has had the highest average car kilometres per person (but it might also reflect kilometres driven by people from across the NSW border in Queanbeyan).

The Australia-wide average is higher than most cities, with areas outside capital cities probably involving longer average car journeys and certainly a higher car mode share. There was a sharp drop in vehicle kms per capita in 2019-20, almost certainly due to COVID-19.

Passenger kilometres travelled

While BITRE’s passenger km estimates were available up to 2019-20 at the time of writing, city population estimates were only available up until June 2019. So in this section, per capita data stops at 2018-19 (before COVID-19), while total km charts go to 2019-20.

Here are passenger kilometres per capita for various modes for Australia as a whole (note the log-scale on the Y axis). Unfortunately BITRE have not published national estimates beyond 2017-18 in their 2020 Yearbook.

Air travel took off (pardon the pun) in the late 1980s (although with a lull in 1990 due to the pilot’s strike), car travel peaked in 2004, bus travel peaked in 1990 and has been relatively flat since, while rail has been increasing in recent years.

Car passengers

Here’s a chart showing total car passenger kms in each city:

The data shows that Melbourne overtook Sydney in 2016-17 as having the most car passenger travel, but then cities were even again in 2019-20 with COVID19 impacts.

Another interesting observation is that total car passenger travel declined in Adelaide in 2018-19 (pre-COVID) according to (revised) BITRE estimates.

However there are large differences in population growth rates between cities. So here is the data per capita:

While car passenger kilometres per capita peaked in 2004 in all cities, there were some increases from around 2013 to 2018 in some cities, but most cities declined in 2019 and 2020 (the latter being no doubt partly related to COVID-19). Darwin is an outlier with an increase in car passenger kms per capita between 2015 and 2020.

Rail passengers

Here are rail passenger kms per capita to 2018-19:

Sydney had the highest train use of all cities and this has been taking off in recent years, likely due to service level upgrades. Other cities have been flat or were in decline (such as Melbourne).

You can see two big jumps in Perth following the opening of the Joondalup line in 1992 and the Mandurah line in 2007. Melbourne, Brisbane and Perth have shown declines over recent years.

Here is growth in total rail passenger kms since 2010 (NOT per capita):

Sydney trains saw rapid growth in the years up until 2019, again probably reflecting significant service level upgrades to provide more stations with “turn up and go” frequencies at more times of the week.

Adelaide’s rail patronage dipped in 2012, but then rebounded following completion of the first round of electrification in 2014.

All cities saw significant declines in 2019-20 with COVID-19 impacts, although BITRE caveats that the 2019-20 estimates for public transport modes were “rough” at the time of publication.

Bus passengers

Here’s bus passenger kms per capita up to 2018/19:

Bus passenger kms per capita have been declining in most cities in recent years, with the exception of Sydney.

Significant investments in bus services in Melbourne and Brisbane between around 2005 and 2012 led to significant patronage growth.

Melbourne has the lowest bus use of all the cities, but this likely reflects the extensive train and tram networks carrying the bulk of the public transport passenger task. Melbourne is different to every other Australian city in that trams provide most of the on-road public transport access to the CBD (with buses performing most of this function in other cities).

Darwin saw a massive increase in bus use in 2014 thanks to a new nearby LNG project running staff services.

Australia-wide bus usage is surprisingly high. While public transport bus service levels and patronage would certainly be on average low outside capital cities, buses do play a large role in carrying children to school – particularly over longer distances in rural areas. The peak for bus usage in 1990 may be related to deregulation of domestic aviation, which reduced air fares by around 20%.

Here is growth relative to 2010:

All cities saw a substantial reduction in 2019-20 due to COVID-19, with Hobart having the smallest reduction. Perhaps there is less discretionary and office-commuter travel on Hobart’s buses?

Light rail passengers

Light rail passenger kms per capita is not really meaningful as Melbourne has a large network, while Sydney and Adelaide have very small (although growing) networks. Here is estimated passenger km growth since 2010:

Sydney light rail patronage increased following the Dulwich Hill extension that opened in 2014, and again with the new lines joining the CBD with Randwick and Kingsford opening in 2019-20. The passenger km growth would have been higher if not for COVID-19.

Adelaide patronage increased following an extension to the Adelaide Entertainment Centre in 2010, and then flatlined for several years. In October 2018, new extensions to Festival Plaza and Botanic Gardens opened but passenger kms actually declined in FY 2018-19.

Mass transport

We can sum all of the mass transport modes (I use the term “mass transport” as the numbers include both public and private bus services). Firstly. here is mass transit share of estimated total motorised passenger kilometres in each city (unfortunately there are no estimates of walking and cycling kilometres):

All cities saw a mode shift away from mass transit in 2019-20 due to COVID-19, which likely reflects the shift to working from home for CBD workers (with such commuter trips making up a substantial share of PT patronage). During the recovery after lockdowns, road traffic has returned to almost normal in most cities, whilst public transport patronage is still well down on pre-COVID19 levels. I should mention again that BITRE describe their 2019-20 estimates of non-private passenger kilometres as “rough”.

But looking at trends prior to 2019-20, Sydney was leading the country in mass transport use per capita which was also rising fast to 2019, with a 2% mode shift between 2016 and 2019 (mostly attributable to trains). The Sydney north west Metro line opened in May 2019, so would only have a small impact on these figures.

Melbourne mass transit had been losing mode share between 2012 and 2019, while other cities have been largely flat or trending down (although Brisbane, Adelaide, and Perth has a small increase in 2018-19).

Melbourne made significant gains between 2005 and 2009, and Perth grew strongly 2007 to 2013, but has since shifted away from public transport (which may be related to a decentralisation of employment).

Here is growth in mass transport passenger kms since 2010:

Darwin saw substantial growth associated with staff bus services to a new LNG plant, while Sydney otherwise was leading in mass transit passenger kilometre growth.

Here’s how car and mass transit passenger kilometres have grown since car used peaked in 2004:

Mass transit use has grown much faster than car use in Australia’s three largest cities. In Sydney and Melbourne it has exceeded population growth, while in Brisbane it is more recently tracking with population growth.

Mass transit has also outpaced car growth in Perth, Adelaide, and Hobart:

In Canberra, both car and mass transit use has grown much slower than population, and it is the only city where car growth has exceeded public transport growth.

Motorcycles

Here are motorcycle passenger kms per capita:

Motorcycle travel was declining per capita until 2000, had a resurgence between 2004 and 2009 (perhaps as fuel prices rose?) and has since reduced somewhat in most cities. I’m not quite sure what might have happened in Melbourne in 2006 to suddenly stop the growth in use. I also wonder about the precision of estimates of motorcycle passenger kilometres, given it is such a small mode.

Car ownership

The ABS conduct a Motor Vehicle Census generally once per year (although less often historically), and the following chart includes that data up until January 2020, combined with population estimates released in December 2020.

Car ownership has risen significantly over time, although this growth has slowed considerably more recently in some states.

However the above measure doesn’t take into account people not of driving age. So the following chart looks at passenger cars per persons aged 18-84 (for want of a better definition of driving aged persons):

It’s still a bit hard to see the more recent trends, so here is a chart that looks at 2000-2020, excludes the Northern Territory (zooming on the top-right section):

This data shows that car ownership peaked in Victoria in 2013, Western Australia in 2017, New South Wales in 2017, Queensland in 2018, South Australian in 2018, and Australia overall in 2018. The Australian Capital Territory may have peaked in 2019 but perhaps it is a little too early to call, while Tasmanian now has the highest car ownership in the country and is still growing strongly.

My previous analysis of census data found that Melbourne was the only large city to see a decline in car ownership between 2011 and 2016 (see also an older post on car ownership).

Motorcycle ownership

Here is a chart showing motorcycles per persons aged 18-84:

This chart shows a slightly different pattern to that of motorcycle passenger kilometres per capita in cities (above). Ownership and usage bottomed out around the 1990s or 2000s (depending on the state/city). However ownership has risen in most states since then, but usage apparently peaked around 2009 in most cities. This perhaps suggests motorcycles are now more a recreational – rather than everyday – vehicle (I really don’t follow the motorcycle industry very closely so others might better explain this).

Driver’s licence ownership

Thanks to BITRE Information Sheet 84, the BITRE Yearbook 2020, and some useful state government websites (NSW, SA, Qld), here is motor vehicle licence ownership per 100 persons (of any age) from June 1971 to June 2019 or 2020 (depending on data availability):

Technical note: the ownership rate is calculated as the sum of car, motorbike and truck licenses – including learner and probationary licences, divided by population. Some people have more than one driver’s licence so it’s likely to be an over-estimate of the proportion of the population with any licence.

There’s been slowing growth over time, but Victoria has actually seen slow decline since 2011, and the ACT peaked in 2014.

Here’s a breakdown by age bands for Australia as a whole:

Licencing rates have been increasing over time for those aged over 40 (most strongly for those aged over 70), and have been declining for those aged under 40, although there was a notable uptick in licence ownership for 16-19 year-olds in 2018.

The next chart shows licencing rates for teenagers:

Licence ownership rates for teenagers had been trending down in South Australia and Victoria until 2017, while most other states have been trending upwards in recent years. The differences between states partly reflects different minimum ages for licensing.

Here are 20-24 year olds:

The largest states of Victoria and New South Wales had seen downwards trends until 2019, while all other states and territories are trending up. The big upticks in 2020 for Queensland and NSW might be a new trend, might also be impacted by the preliminary nature of June 2020 population estimates from the ABS, and/or might be impacted be an exodus of international students.

25-29 year olds are a mixed bag – Victoria has been trending downwards sharply, New South Wales has (probably) just ended a downwards trend, while most other states have been increasing or relatively steady.

Licencing rates for people in their 70s have been rising in all states, although it may be slowing in Western Australia and NSW more recently (I have excluded 2016 for South Australia as I suspect a data error):

A similar trend is clear for people aged 80+ (Victoria was an anomaly before 2015):

See also an older post on driver’s licence ownership for more detailed analysis.

For completeness, here is a chart showing motorcycle full licence ownership rates:

Queensland has two types of motorcycle licence and I suspect many people hold both, which might explain a licence ownership rate being so much higher than other states.

Transport greenhouse gas emissions

According to the latest adjusted quarterly figures, Australia’s domestic non-electric transport emissions peaked in 2018, had been slightly declining (which reflects reduced consumption of petrol and diesel) before COVID impacted the year-ending June 2020 figure.

The seasonally-adjusted estimate for the June quarter of 2020 is 19.2 Mt, which is down 24% on the June quarter of 2019:

Non-electric transport emissions made up 19.1% of Australia’s total emissions as at December 2019 (before the COVID-19 impact).

Here’s a breakdown of transport emissions by financial year:

A more detailed breakdown of road transport emissions is available, but only back to 1990:

Here’s growth in transport sector emissions since 1975:

The 2019-2020 estimates are heavily impacted by COVID-19, most evidently in aviation, but also for road transport.

Road emissions had grown steadily to 2019, while aviation emissions took off around 1991 (pardon the pun). You can see that 1990 was a lull in aviation emissions, probably due to the pilots strike around that time.

In more recent years non-electric rail emissions have grown strongly. This will include a mix of freight transport and diesel passenger rail services – the most significant of which will be V/Line in Victoria, which have grown strongly in recent years (140% scheduled service kms growth between 2005 and 2019). Adelaide’s metropolitan passenger train network has historically run on diesel, but has more recently been transitioning to electric.

Here is the growth in each sector since 1990 (including a breakdown of road emissions):

Within road transport, COVID-19 has had the biggest impact on cars, buses, motor cycles and light commercials. However, emissions from (larger) articulated trucks continued to grow.

Here are average emissions per capita for various transport modes in Australia, noting that I have used a log-scale on the Y-axis:

Per capita emissions have been decreasing for cars, and – until 2019 – were relatively stable for most other modes. Total road transport emissions per capita peaked in 2004 (along with vehicle kms per capita, as above).

Transport greenhouse gas emissions intensity

It’s possible to combine data sets to estimate average emissions per vehicle kilometre for different vehicle types, but only until 2018 with published data (note I have again used a log-scale on the Y-axis):

Note: I suspect the kinks for buses and trucks in 2015 are issues to do with estimation assumptions made by BITRE, rather than actual changes.

Most modes have shown slight declines in emissions per vehicle km, except trucks. On these estimates, car have dropped from 281 g/km in 1990 to 243 g/km in 2018.

However, the above figures don’t take into account the average passenger occupancy of vehicles. To get around that we can calculate average emissions per passenger kilometre for the passenger-orientated modes (data only available until 2018 unfortunately):

Domestic aviation estimates go back to 1975, and you can see a dramatic decline between then and around 2004 – followed little change (even a rise in recent years). However I should mention that some of the domestic aviation emissions will be freight related, so the per passenger estimates might be a little high.

Car emissions per passenger km in 2017-18 were 154.5g/pkm, while bus was 79.0g/pkm and aviation 127.2g/pkm.

Of course the emissions per passenger kilometres of a bus or plane will depend on occupancy – a full aeroplane or bus will have likely have significantly lower emissions per passenger km. Indeed, the BITRE figures imply an average bus occupancy of around 9 people (typical bus capacity is around 70) – so a well loaded bus should have much lower emissions per passenger km. The operating environment (city v country) might also impact car and bus emissions. On the aviation side, BITRE report a domestic aviation average load factor of 79.3% in 2019-20.

Cost of transport

The final topic for this post is the real cost of transport. Here are headline real costs (relative to CPI) for Australia:

Technical note: Private motoring is a combination of factors, including motor vehicle retail prices and automotive fuel. Urban transport fares include public transport as well as taxi/ride-share.

The cost of private motoring has tracked relatively close to CPI, although it seems to be trending down since 2008, probably largely related to reductions in the price of automotive fuel (which peaked in 2008). The real cost of motor vehicles has plummeted since 1996, although that trend may have stopped in 2018. Urban transport fares have been increasing faster than CPI since the late 1970s, although they have grown slower than CPI (on aggregate) since 2013.

Here’s a breakdown of the real cost of private motoring and urban transport fares by city (note different Y-axis scales):

Note: I suspect there is some issue with the urban transport fares figure for Canberra in June 2019. The index values for March, June, and September 2019 were 116.3, 102.0, and 118.4 respectively.

Urban transport fares have grown the most in Brisbane, Perth and Canberra – relative to 1973.

However if you choose a different base year you get a different chart:

What’s most relevant is the relative change between years – eg. you can see Brisbane’s experiment with high urban transport fare growth between 2009 and 2017 in both charts.

I hope you have found this interesting.


What impact has the 2020 COVID-19 pandemic had on road traffic volumes in Victoria?

Sun 3 May, 2020

[Last updated 25 July 2020, not all charts]

For the most recently analysis of road traffic volumes – see my twitter feed.

Roads in Victoria were noticeably quieter during the depth of the pandemic shutdown, but just how much did traffic reduced? Has it varied by day of the week, time of day, and/or distance from the city centre? How have volumes increased as restrictions have been eased? What has been the impact naming identifying hot spots and postcode lock downs?

To answer these questions I’ve downloaded traffic signal loop vehicle count data from data.vic.gov.au. The data includes vehicle detection loops at 3,760 signalised intersections across Victoria (87% of which are in Greater Melbourne).

I should state that it is not a perfect measure of traffic volume:

  • It may under-count motorway-based and rural travel which may cross fewer loop detectors.
  • There are occasional faults with loops, and I’m only able to filter out some of the faulty data (supplied with negative count values), so there is a little noise but I will attempt to wash that out by using median counts rather than sums or averages (although charts of averages show very similar patterns to charts of medians).
  • Some vehicles moving through an intersection might get counted at multiple loops, but I would hope this has minimal impact on overall traffic volume trends.

How have traffic volumes reduced during the pandemic?

Firstly, median 24-hour loop volumes for each day:

Note: the actual numbers aren’t very meaningful, it is the relative numbers that matter.

There are regular variances by day type (eg Fridays generally having the most traffic), so here is a chart looking changes by day of the week, relative to the first two weeks of March 2020. I’ve annotated various significant announcements and changes in rules.

At their lowest, weekday volumes went down around 40%, while weekend volumes went down more like 50%.

In late-June volumes were down only 10-20%, with significant growth on Saturdays. However volumes declined again as a second wave of infections hit, and more restrictions were reintroduced. The key turning point was Saturday 20 June when the first warnings were raised about outbreaks, increasing cases, and a slow down in easing of restrictions.

In the early part of the second lock down, volumes were similar to April, the bottom of the first lock down, but then they settled at higher levels (more on that shortly).

Some curious outliers:

  • Thursday 9 April – the day before Good Friday: there may have been some travel to holiday homes, and/or other travel that happens normally on the last workday of the week.
  • Wednesday 8 July – the day before Melbourne and Mitchell Shire re-entered stage 3 restrictions (lock down), suggesting many people brought forward travel activity that was about to no longer be allowed.
  • Saturday 16 May & Sunday 17 May: there was a surge in traffic volumes on the first weekend after restrictions where eased.

Have traffic trends been different in different parts of the state?

There have been many more COVID-19 cases in Melbourne than regional Victoria. Here’s a chart showing daily volume changes in Greater Melbourne:

There is very little difference compared to the whole of Victoria chart, as most signals are located within Greater Melbourne.

Here is a chart of only signals outside Greater Melbourne, showing much less decline in late June / early July.

A notable exception here is Sundays where there has been a decline in July – perhaps Sundays normally involve a lot of travel to/from Melbourne.

How has traffic changed during the second wave?

From late June, there were increasing warnings about outbreaks in LGAs, suburbs, specific postcodes entered lock down before all of Melbourne plus the Shire of Mitchell also went into lock down. This section looks at the impact of some of the responses to what has become a second wave.

On 25 June, 10 suburbs were announced as outbreak concerns, with door-to-door testing campaigns to be conducted. These suburbs were within 6 LGAs identified on 20 June, so this may have refined people’s concern.

It is possible to filter to signal sites in the listed hot spot suburbs, although there are only around 100 signalised such sites (and none at all fall into the small suburb of Albanvale) which makes for some noisy data. Also, I would dare say that a lot of traffic in these suburbs is through traffic rather than local traffic.

To overcome daily noise, I’ve calculated the rolling 7 day average volume – excluding public holidays with with some normalisation (see below chart explanation). That does mean that sudden daily changes in traffic are smoothed out over the following 7 days.

Boring but necessary technical notes: Many traffic signals are on roads that are LGA boundaries – and which LGA an intersection falls into is almost random – it depends on the coordinates of the intersection point. To normalise volumes, I have calculated the ratio of the average volume for each day of the week in February to the overall February average, and then adjusted daily volumes using these ratios to produce a relatively smooth daily time series. The rolling 7 day average then omits any public holidays. It’s not perfect, as you can see around Easter, but it was necessary to avoid having large gaps or blips in the above chart. For this analysis I used February as the baseline, as there was a public holiday in the first two weeks of March, complicating the normalisation.

Volumes immediately dropped more quickly in these suburbs compared to the rest of Melbourne, although they later settled at higher levels than the rest of Melbourne.

On 30 June there was an announcement that 10 postcodes would return to “lock down” (only four essential travel purposes allowed) from 2 July. Those postcodes mostly – but not entirely – lined up with the 10 warning suburbs. Here’s a similar chart that separates out those postcodes, from the rest of Melbourne (plus Mitchell Shire) that went into lock down on 9 July:

There was a step change from 2 July as the restrictions took hold (on top of a reduction from the school holidays), and the rest of Melbourne followed after 9 July.

During the first lock down, these 10 postcodes saw a slightly smaller traffic reduction compared to the rest of Melbourne, but in the second lock down other parts of Melbourne have not seen the same traffic reductions.

The 7 day averaging process hides a little of the behaviour change, so here is a daily volume chart for those 10 postcodes:

While volumes in these postcodes started declining from the first warning announcement on 20 June, if you look carefully you’ll see that on Wednesday 1 July there was little change in volume compared to the previous Wednesday. This was the last day before the lock down, and presumably some people made some extra travel that was about to become against the rules. Once the lock down had commenced, volumes were very similar to those experienced during the “stage 3” restrictions of early April. This is similar to the surge in traffic seen in Melbourne the day before the second lock down.

A more detailed look at Melbourne

The following animated map shows the change in weekday volume relative to the first two weeks of March, for each site, each week since the beginning of March. Note that there are anomalous sites for various reasons (eg faults, roadworks) – I’ve tried to filter out some sites with unusual data, but it’s difficult to get all of them.

If you ignore individual sites that look like outliers you can see some clear patterns:

  • Volumes haven’t reduced as much in industrial areas during lock downs, as freight and logistics largely keep operating, and factory workers continued to go to work.
  • Volumes didn’t recover in the central city as they have in the suburbs, which makes sense with so many office workers have continued to work from home.
  • Melbourne Airport volumes have been significantly below normal throughout, obviously due to national and international travel restrictions.
  • Volumes were slower to recover in the Clayton area – probably related to working from home, and Monash University not having on-campus teaching.
  • Volumes reduced from the week of 29 June, a mix of the school holiday impact, an increase in travel restrictions, and probably general fear about a second wave of infections.

I must apologise to the those with colour-blindness, it’s much more difficult to show the changes with only two-three colours.

This map doesn’t however explain the slightly smaller traffic reduction in Melbourne outside the initial 10 lock down postcodes.

The following map compares traffic volumes on Wednesday 22 July with those in the first two weeks of April (I’ve chosen a Wednesday to be clear of the Easter long weekend that happened in the second week of April). Note that the flip between orange and blue occurs at 110% (you might intuitively expect it to be at 100%).

This map pretty clearly shows that second lock down volumes were higher in the eastern and south-western suburbs, but much closer to April in the north-eastern suburbs. There have been fewer COVID-19 cases in the south-eastern suburbs, and this might reflect people’s self-regulation based on perceived local risk.

Indeed, here is a chart comparing active cases as at 19 July to traffic on 20 July relative to the first lock down:

Local government areas (LGAs) with higher numbers of active cases tend to have traffic levels closer to those in early April, while LGAs with fewer cases have seen higher traffic volumes in April. I might try to explore this relationship over time in future.

How does 2020 compare to 2019?

The above analysis hasn’t differentiated school days and school holidays, and any general seasonality across the year. Here is a chart comparing 2020 with 2019 for weekdays, Saturdays and Sundays (excluding public holidays):

I will emphasise that there will be week-to-week variations, particularly on weekends, due to short term factors such as weather and special events. Also, while school returned in week 16 of 2020, most students were not attending schools in person (ditto week 29).

The winter school holidays began in week 27, and traffic volumes in 2020 appeared to drop in proportion to the traffic reduction in the same week in 2019.

The following chart compares 2020 to 2019 on a daily basis (with 2019 days offset by -1 to align days of the week):

We can also look at the percentage difference between the years, but only for days that have the same day type in terms of school term or holidays, and public holidays where they fall on the equivalent day of the year. So there are some gaps in the following chart, plus some noise due to daily fluctuations:

This chart shows January to late July. There are gaps around the autumn school holidays and Easter as they didn’t perfect match days of the year perfectly.

You need to not get too excited about daily variations (the Tuesday in the second week of 2019 school holidays had unusually low volume in Melbourne for some reason, which shows up as a spike for 2020).

This chart gives a feel for variations from expected patterns. Traffic in the Melbourne was down a similar percentage in the first week of the winter school holidays compared to the previous week of school.

Melbourne traffic volumes began falling in the second week of winter school holidays with the rise in cases and commencement of some postcode lock downs, and then fell further with the Melbourne + Mitchell lock down from 9 July.

However in regional Victoria volumes were relatively higher in the winter school holidays – perhaps as Melbourne people were more likely to travel intrastate for holidays (interstate travel being heavily restricted, and travel not having been an option in the previous autumn school holidays). Regional Victoria travel volumes have been tracking around 10% below 2019 since early June.

The next chart compares each 2020 week with the same week 2019 for Melbourne LGAs plus Mitchell. However it is important to note that there was quite a bit of week to week variation in 2019, and the autumn school holidays started a couple of weeks earlier in 2020.

On this measure, weekdays bottomed out around 38% below 2019, but recovered to be ~10% down in week 24 (on weekdays and Saturdays). Weekends were down around 50%, but recovered to around 10-15% down before the second wave. However pre-pandemic volumes were around 5% higher than 2019, so you could perhaps add another 5% to the reduction figures.

How has traffic reduced by time of day?

The traffic signal data is available in 15 minute intervals, so it is possible to examine patterns in more detail.

Here’s a look at the traffic volumes by time of day for Wednesdays:

You can see a significant flattening of the traditional peaks from late March, although curiously the PM peak still commences around 3 pm, even during the school holidays. From late May there was a significant jump in peak period traffic, coinciding with the return to school of grades Prep, 1, 2, 11 and 12.

1 July was the first week of the winter school holidays and you can see substantial traffic reductions at school times, most notably in the AM peak. Meanwhile the PM commuter peak (around 5 pm) was very similar to late June.

There was a spike in traffic on 8 July – the last day before the second Melbourne full lock down.

Evening traffic was down considerably but it’s a little hard to gauge this reduction the chart. So here is a chart showing traffic volume changes relative to the first two weeks of March (with apologies to anyone with colour-blindness):

Volumes went down the most in the evenings (particularly around 9 pm) which might reflect the closure of hospitality venues, cessation of sports and reduced social activity. The AM and PM peak periods were down around 50% at the bottom, while the inter-peak period has held up the most – being only down around 30%.

Volumes recovered considerably over May and June, with volumes around 3pm back near pre-COVID levels (prior to the winter school holidays). The AM peak is interesting – at 7am, traffic on 17 June was still down around 28%, but at 8:45am is was only around 9% down – possibly reflecting the school peak, and/or a narrowing of the commuter peak (as lower congestion provides less incentive for peak spreading). As at mid-June, evening traffic was still down around 40%.

Again 8 July is an outlier – evening traffic was a lot busier, in fact traffic leading up to midnight was busier than early March, suggesting people cramming in travel activity that was about to become restricted.

I should point out that this analysis compares to a baseline of a two days in early March, and there may be some associated noise (eg weather or event impacts on particular days).

Here is the same for Fridays (excluding the Good Friday public holiday):

Late evening traffic was down even more than for Wednesdays, which probably reflects higher volumes of hospitality-related travel on Friday nights. Friday evening traffic jumped on 15 May when small social gatherings were allowed, and again on 5 June when restaurants and cafes were allowed to have dine-in patrons.

Here is Saturdays (excluding Anzac Day):

The Saturday profile shape hasn’t changed as much as weekdays, but the evenings were down most significantly.

Curiously there are several spikes in the curve in the morning – and they are the 15 minute intervals leading up to the hours of 7am, 8am, 9am, and 10am. Initially I wondered if it was a data quality issue, but I suspect it reflects a surge in travel just before work shifts and other activities that start on the hour.

For some reason traffic volumes were relatively low around 6 am on Saturday 7 March, which has resulted in other days showing less reduction.

Saturday night travel was down considerably – by over 70% by midnight at the depths of the shutdown, but jumped with restrictions easing, similar to Friday evenings. As of mid-June it was down around 25-30%.

You can also see early Saturday morning (Friday night) travel down around 60-70% at worst (discounting 11 April which was the Saturday morning following Good Friday).

Here is Sundays:

Sunday 8 March was on the Labour Day long weekend (including the Moomba festival), which probably explains the much busier traffic that Sunday night (not being a “school night”). You can more clearly see that on the following chart:

Another anomaly here is Sunday 7 June – which was another public holiday eve.

Here’s the profile by day of the week for each week since February (public holidays excluded):

This data suggests a roughly a one hour lag on Sunday mornings compared to Saturday mornings – ie travel volumes hold up an hour later on Saturday nights and ramp up an hour later on Sunday mornings. This pattern holds up for other weeks. It also shows the middle of the day on Saturdays to mostly be busier than the same time on weekdays.

Here’s another look at relative time of day traffic volumes for March through to July:

If you look closely (no, your eyes are not losing focus!) you can see:

  • Significant volume reductions after schools finished on 23 March
  • A surge in traffic on 9 April – the Thursday before Good Friday
  • Extremely quiet traffic on Good Friday (10 April)
  • Higher traffic volumes on 8 July (the day before the second lock down), particularly into the evening.
  • Generally higher traffic on the last weekday of the week, particularly in the afternoon and evening (including during the shut down period)

Have traffic impacts been different by distance from the CBD?

Here’s a chart showing year-on-year reduction in median traffic volumes at intersections by distance from the Melbourne CBD for weeks 14 and 15 (the lowest two weeks of the lock-down):

What is clear is that the central city experienced much larger traffic volume reductions than other parts of Melbourne, which makes sense as office workers stayed home, universities, cafes, restaurants and night-life closed, and (non-essential) retail activity slowed considerably.

There is some noise in the variations by distance from the CBD but I suggest not too much should be read into that as there will be various local factors at play.

The following animated chart shows median weekday volumes per week, by distance from the CBD, since the start of March 2020:

You can see the traffic decline has remained the largest in the central city. The reduction in traffic in the week of 28 June was mostly in the suburbs more than 3 km from the CBD.

Traffic signal data comes out daily, and so I will try to update this analysis at least once a week during the recovery period. There may be more frequent updates on Twitter.