Update on Australian transport trends (December 2023)

Mon 1 January, 2024

[Updated 29 March 2024: Capital city per-capita charts updated using estimated residential population data for June 2023]

What’s the latest data telling us about transport trends in Australia?

The Australian Bureau of Infrastructure and Transport Research Economics (BITRE) have recently published their annual yearbook full of numbers, and this post aims to turn those (plus several other data sources) into information and insights about the latest trends in Australian transport.

This is a long and comprehensive post (67 charts) covering:

I’ve been putting out similar posts in past years, and commentary in this post will mostly be around recent year trends. See other similar posts for a little more discussion around historical trends (December 2022, January 2022, December 2020, December 2019, December 2018).

Vehicle kilometres travelled

Vehicle and passenger kilometre figures were significantly impacted by COVID lockdowns in 2020 and 2021 which has impacted financial years 2019-20, 2020-21, and 2021-22. Data is now available for 2022-23, the first post-pandemic year without lock downs.

Total vehicle kilometres for 2022-23 bounced back but were still lower than 2018-19:

The biggest pandemic-related declines in vehicle kilometres were in cars, motorcycles, and buses:

All modes showed strong growth in 2022-23.

Here’s the view on a per-capita basis:

Vehicle kilometres per capita peaked around 2004-05 and were starting to flatline in some states before the pandemic hit with obvious impacts. In 2022-23 vehicle kilometres per capita increased in all states and territories except the Northern Territory and Tasmania.

Here is the same data for capital cities:

Cities with COVID lockdowns in 2021-22 (Melbourne, Sydney, Canberra) bounced up in 2022-23, while Brisbane and Perth were relatively flat, Adelaide was slightly up, and Darwin slightly down. All large cities are still well below 2018-19 levels, consistent with an underlying long-term downwards trend.

Canberra has dramatically reduced vehicle kilometres per capita since around 2014 leaving Brisbane as the top city.

Passenger kilometres travelled

Here are passenger kilometres travelled overall (log scale):

The pandemic had the biggest impact on rail, bus, and aviation passenger kilometres. Aviation has bounced back to pre-COVID levels while train and bus are still down (probably due to working from home patterns, reduced total bus vehicle kilometres, amongst other reasons).

Here is the same on a per-capita basis which shows very similar patterns (also a log scale):

Car passenger kilometres per capita have reduced from a peak of 13,113 in 2004 to 10,152 in 2023.

Curiously aviation passenger kilometres per capita peaked in 2014, well before the pandemic. Rail passenger kilometres per capita in 2019 were at the highest level since 1975.

Here’s total car passenger kilometres for cities:

The COVID19 pandemic certainly caused some fluctuations in car passenger volumes in all cities for 2019-20 to 2021-22. In 2022-23, Sydney and Melbourne had not recovered to pre-pandemic levels, while Perth hit a new high.

Here are per capita values for cities:

Car passenger kilometres per capita bounced back in Sydney, Melbourne, and Canberra – however most cities had 2022-23 figures that were in line with a longer-term downward trend – if you disregard the COVID years.

Public transport patronage

BITRE are now reporting estimates of public transport passenger trips (as well as estimated passenger kilometres). From experience, I know that estimating and reporting public transport patronage is a minefield especially for boardings that don’t generate ticketing transactions. While there are not many explanatory notes for this data, it appears BITRE have estimated capital city passenger boardings, which will be less than some ticketing region boardings (Sydney’s Opal ticketing region extends to the Illawarra and Hunter, and South East Queensland’s Go Card network includes Brisbane plus the Sunshine and Gold Coasts). I’ll report them as-is, but bear in mind that they might not be perfectly directly comparable between cities.

Of course bigger cities tend to generate more boardings, so it’s probably worth looking at passenger trips per capita per year:

This chart produces some unexpected outliers. Hobart shows up with very high public transport trips per capita in the 1970s, which might be relate to the Tasman Bridge Disaster which severed the bridge between 1975 and 1977 and resulted in significant ferry traffic for a few years (over 7 millions trips in 1976-77). Canberra also shows up with remarkably high trips per capita in the 1980s for a relatively small, low density, car-friendly city, but has been in steady decline since.

Canberra, Sydney, and Brisbane were seeing rising patronage per capita up to June 2019, just before the pandemic hit.

Most cities (except Darwin and Hobart), showed a strong bounce back in public transport trips per capita in 2022-23, although none reached 2018-19 levels.

There are further reasons why comparing cities is still not straight forward. Smaller cities such as Darwin, Canberra, and Hobart are almost entirely served by buses, and so most public transport journeys will only require a single boarding. Larger cities have multiple modes and often grid networks that necessitate transfers between services for many journeys, so there will be a higher boardings to journeys ratio. If a city fundamentally transforms its network design there could be a sudden change in boardings that doesn’t reflect a change in mode share.

Indeed, here is the relationship between population and boardings over time. I’ve drawn a trend curve to the pre-pandemic data points only (up to 2019).

Larger cities are generally more conducive to high public transport mode share (for various reasons discussed elsewhere on this blog) but also often require transfers to facilitate even radial journeys.

So boardings per capita is not a clean objective measure of transit system performance. I would much prefer to be measuring public transport passenger journeys per capita (as opposed to boardings) which might overcome the limitations of some cities requiring transfers and others not.

The BITRE data is reported as “trips”, but comparing with other sources it appears the figures are boardings rather than journeys. Most agencies unfortunately don’t report public transport journeys at this time, however boardings to journeys ratio could be estimated from household travel survey data for some cities.

Public transport post-pandemic patronage recovery

I’ve been estimating public transport patronage recovery using the best available data for each city (as published by state governments – unfortunately the usefulness and resolution of data provided varies significantly, refer: We need to do better at reporting and analysing public transport patronage). This data provides a more detailed and recent estimate of patronage recovery compared to 2019 levels. Here’s the latest estimates at the time of preparing this post:

Perth seems to be consistently leading Australian and New Zealand cities on patronage recovery, while Melbourne appears to be the laggard in both patronage recovery and timely reporting. For more discussion and details around these trends see How is public transport patronage recovering after the pandemic in Australian and New Zealand cities?.

[refer to my twitter feed for more recent charts]

Passenger travel mode split

It’s possible to calculate “mass transit” mode share using the passenger kilometres estimates from BITRE (note: I use “mass transit” as BITRE do not differentiate between public and private bus travel):

Mass transit mode shares obviously took a dive during the pandemic, but have since risen, although not back to 2019 levels – presumably at least partly because of working from home.

The relative estimates of share of motorised passenger kilometres are quite different to the estimates of passengers trips per capita we saw just above. Canberra is much lower than the other cities, and Brisbane and Melbourne are closer together. The passenger kilometre estimates rely on data around average trip lengths (which is probably not regularly measured in detail in all cities), while the passenger boardings per capita figures are subject to varying transfer rates between cities. Neither are perfect.

So what else is there? I have been looking at household travel survey data to also calculate public transport mode share, but I am getting unexpected results that are quite different to BITRE estimates (especially Melbourne) and with unexpected trends over time (especially Brisbane), so I’m not comfortable to publish such analysis at this point.

What would be excellent is if agencies published counts of passenger journeys (that might involve multiple boardings), so we could compare cities more readily.

Rail Passenger travel

Here’s a chart showing estimates of annual train passenger kilometres and trips.

All cities are bouncing back after the pandemic.

Note there are some variances between the ranking of the cities – particularly Perth and Brisbane (BITRE have average train trip length in Brisbane at around 20.3 km while Perth is 16.3 km).

Here’s rail passenger kilometres per capita, but only up to 2021-22:

Bus passenger travel

Here’s estimates of total bus travel for capital cities:

And per capita bus travel up to 2021-22:

Note that Melbourne has the second highest volume of bus travel (being a large city), but the lowest per-capita usage of buses, primarily because – unlike most other cities – trams perform most of the busy on-street public transport task in the inner city. It probably doesn’t make sense to directly compare cities for bus patronage per capita, and indeed I won’t show such figures for the other public transport modes.

Darwin had elevated bus passenger kilometres from 2014 to 2019 due to bus services to a resources project (BITRE might not have counted these trips as urban public transport).

Ferry passenger travel

Sydney ferry patronage has almost recovered to pre-pandemic levels, while Brisbane’s ferries have not (as at 2022-23).

Light rail / tram passenger travel

Sydney light rail patronage is now growing strongly – after two new lines opened a few months before the pandemic hit.

Road deaths

In recent months there has been an uptick in road deaths in NSW and SA. Victorian road deaths dropped during the pandemic but are back to pre-pandemic levels.

It’s hard to compare total deaths between states with very different populations, so here are road deaths per capita, for financial years:

There is naturally more noise in this data for the smaller states and territories as the discrete number of trips in these geographies is small. The sparsely populated Northern Territory has the highest death rate, while the almost entirely urban ACT has the lowest death rate.

Another way of looking at the data is deaths per vehicle kilometre:

This chart is very similar – as vehicle kilometres per capita haven’t shifted dramatically.

Next is road deaths by road user type, including a close up of recent years for motorcycles, pedestrians, and cyclists. I’ve not distinguished between drivers and and passengers for both vehicles and motorcycles.

Vehicle occupant fatalities were trending down until around 2020. Motorcyclist fatalities have been relatively flat for a long time but have risen slightly since 2021.

Pedestrian fatalities were trending down until around 2014 and have been bouncing up and down since (perhaps a dip associated with COVID lock downs).

Cyclist fatalities have been relatively flat since the early 1990s (apart from a small peak in 2014).

It’s possible to distinguish between motorcycles and other vehicles for both deaths and vehicle kilometres travelled, and the following chart shows the ratio of these across time:

The death rate for motorcycle riders and passengers per motorcycle kilometre was 38 times higher than other vehicle types in 2022-23. The good news is that the death rate for other vehicles has dropped from 9.8 in 1989-90 to 2.7 in 2022-23. The death rate for motorcycles was trending down from 1991 to around 2015 but has since risen again in recent years.

Freight volumes and mode split

First up, total volumes:

This data shows a dramatic change in freight volume growth around 2019, with a lack of growth in rail volumes, a decline in coastal shipping, but ongoing growth in road volumes. Much of this volume is bulk commodities, and so the trends will likely be explained by changes in commodity markets, which I won’t try to unpack.

Non-bulk freight volumes are around a quarter of total freight volume, but are arguably more contestable between modes. They have flat-lined since 2021:

Here’s that by mode split:

In recent years road has been gaining mode share strongly at the expense of rail. This is a worrying trend if your policy objective is to reduce transport emissions as rail is inherently more energy efficient.

Air freight tonnages are tiny in the whole scheme of things so you cannot easily see them on the charts (air freight is only used for goods with very high value density).

Driver’s licence ownership

Here is motor vehicle licence ownership for people aged 15+ back to 1971 (I’d use 16+ but age by single-year data is only available at a state level back to 1982). Note this includes any form of driver’s licence including learner’s permits.

Technical note: the ownership rate is calculated as the sum of car, motorbike and truck licenses – including learner and probationary licences, divided by population. Some people have more than one driver’s licence so it’s likely to be an over-estimate of the proportion of the population with any licence.

Unfortunately data for June 2023 is only available for South Australia, Western Australia and Victoria, so we don’t know the latest trends in all states. South Australia and New South Wales regrettably appear to have recently stopped publishing useful licence holder numbers.

2023 saw a decline in licence ownership in the three states that reported. 2022 was a mixed bag with some states going up (NSW, South Australia, Tasmania), many flat, and the Northern Territory in decline.

Licence ownership rates have fluctuated in many states since the COVID19 pandemic hit, most notably in Victoria and NSW which saw a big uptick in 2021.

The data series for the ACT is unusually different in trends and values – with very high but declining rates in the 1970s, seemingly elevated rates from 2010 to around 2018, followed by a sharp drop. BITRE’s Information Sheet 84 (published in 2017) reports that ACT licences might remain active after people leave the territory (e.g. to nearby parts of NSW) because of delays in transferring their licences to another state, resulting in a mismatch between licence holder counts and population. However, New South Wales requires people to transfer their licence within 3 months of moving there, and other states likely do also. But that requirement might be new, changed, and/or differently enforced over time (please comment if you know more).

Here’s the breakdown of reported licence ownership by age band for the ACT:

Many age bands exceed 100 (more licence holders than population) and there are some odd kinks in the data around 2015-2017 for all age bands (especially 70-79). I’m not sure that it is plausible that licencing rates of teenagers might have plummeted quite so fast in recent years. I’m inclined to treat all of this ACT data as suspect, and I will therefore exclude the ACT from further charts with state/territory disaggregation.

Here’s licence ownership by age band for Australia as a whole (to June 2022):

Between 2021 and 2022 ownership rates for 16-24 year-olds fell slightly, while ownership rates continued to rise for older Australians (quite dramatically for those 80 and over, mostly due to NSW, see below).

Let’s look at the various age bands across the states:

Victoria saw a sharp decline in Victoria to June 2020, followed by a bounce back to a higher rate in 2021. The pandemic has also been associated with increased rates in South Australia, Tasmania, and New South Wales (although it dropped again in 2022). Western Australia and the Northern Territory have much lower licence rates, likely due to different eligibility ages for learner’s permits.

For 20-24 year olds the pandemic caused big increases in the rate of licence ownership in most states, however Victoria, South Australia, and Western Australian appear to have peaked. Licence ownership among 20-24 year olds was still surging in Tasmania up to June 2022.

Similar patterns are evident for 25-29 year olds:

One trend I identified a year ago was that the increasing rate of licence ownership seemed to largely reflect a decline in the population in these age bands during the pandemic period when temporary migrants were told to go home, and immigration almost ground to a halt. Most of the population decline was those without a licence, while the number of licence holders remained fairly steady.

New South Wales appears to follow this pattern, although there was strong growth in licence holders in 2021 and 2022 for teenagers.

Victoria saw a decline in licence holders in 2020 (likely teenagers unable to get a learner’s permit due to lockdowns), but the number of teenage licence holders has since grown. While for those in their 20s, the increase in the licence ownership rate is mostly explained by a loss of population without a licence:

Queensland has experienced strong growth in licence holders at the same time as a decline in population aged 20-29 in 2022. This might be the product of departing temporary immigrants partly offset by interstate migration to Queensland.

To illustrate how important migration is to the composition of young adults living in Australia, here’s a look at the age profile of net international immigration over time for Australia:

For almost all years, the age band 20-24 has had the largest net intake of migrants. This age band also saw declining rates of driver’s licence ownership – until the pandemic, when there was a big exodus and at the same time a significant increase in the drivers licence ownership rate. The younger adult age bands have seen a surge in 2022-23, and in the three states with data the licence ownership rates have dropped (as I predicted a year ago).

Curiously as an aside, 2019-20 saw a big increase in older people migrating to Australia (perhaps people who were overseas returning home during the pandemic lock downs). But then big negative numbers were seen in 2020-21, and since then there has continued to be net departures in 65+ age band.

For completeness, here are licence ownership rate charts for other age groups:

There appear to be a few dodgy outlier data points for the Northern Territory (2019) and South Australia (2016).

You might have noticed some upticks for New South Wales in 2022, particularly for those aged over 80. I’m not sure how to explain this. Here’s all the age bands for NSW:

Here’s Victoria, which includes data to 2023:

For completeness, here are motor cycle licence ownership rates:

Motorcycle licence ownership per capita has been declining in most states and territories, except Tasmania. I suspect dodgy data for New South Wales 2016, and Tasmania 2019.

Car ownership

Thankfully BITRE has picked up after the ABS terminated it’s Motor Vehicle Census, and are now producing a new annual report Motor Vehicle Australia. They’ve tried to replicate the ABS methodology, but inevitably have come up with slightly different numbers in different states for different vehicle types for 2021 (particularly Tasmania). So the following chart shows two values for January 2021 – both the ABS and BITRE figures so you can see the reset more clearly. I suggest focus on the gradient of the lines between surveys and try to ignore the step change in 2021.

Let’s zoom in on the top-right of that chart:

All except South Australia, Tasmania, and ACT showed a decline in motor vehicle ownership between January 2022 and January 2023. This might reflect the recent return of “recent immigrants” (as I predicted a year ago).

Tasmania had a large difference in 2021 estimates between ABS and BITRE that seems to be closing so who knows what might be going on there.

Several states appear to have had peaks – Tasmania in 2017, Western Australia in 2016, and ACT in 2017.

Vehicle fuel types

Petrol vehicles still dominate registered vehicles, but are slowly losing share to diesel:

Can you see that growing slither of blue at the top, being electric vehicles? Nor can I, so here’s the share of registered vehicles that are fully electric (battery or fuel cell, but not hybrids):

The almost entirely urban Australian Capital Territory is leading the country in electric vehicle adoption, while the Northern Territory is the laggard.

Motor vehicle sales

Here are motor vehicle sales by vehicle type:

The trend to larger and heavier vehicles (SUVs) might make it harder to bring down transport emissions (and perhaps reduce road deaths).

Electric vehicle sales are small but currently growing fast in volume and share:

[Updated 7 January 2024:] I’ve included calendar year 2023 sales from FCAI (their 2022 figures were very close to BITRE’s) and calculated the percentage of sales that were battery electric based on FCAI/ABS totals.

Transport Emissions

Transport now makes up 19% of Australia’s greenhouse gas emissions (excluding land use), up from 15% in 2001:

You can see that Australia’s total emissions excluding land use have actually increased since 2001. Emissions reductions in the electricity sector have been offset by increases in other sectors, including transport.

Australia’s transport rolling 12 month emissions dropped significantly with COVID lockdowns, but are bouncing back strongly:

Here are seasonally-adjusted quarterly estimates, showing September 2023 emissions back to 2018 levels:

Transport emissions are around 34% higher in September 2023 than in September 2001, the second highest growth of all sectors since that time:

Here are annual Australian transport emissions since 1975:

And in more detail since 1990:

The next chart shows the growth trends by sector since 1990:

Aviation emissions saw the biggest dip during the pandemic but are now back above 2018 levels.

Here are per capita emissions by transport sector (note: log scale used on Y-axis):

Truck and light commercial vehicle emissions per capita have continued to grow while many other modes have been declining, including a trend reduction in car emissions per capita since around 2004.

Next up, emissions intensity (per vehicle kilometre):

I suspect a blip in calculation assumptions in 2015 for bus and trucks.

Emissions per passenger kilometre can also be estimated:

Car emissions have continued a slow decline, but bus and aviation emissions per passenger km increased in 2021, presumably as the pandemic reduced average occupancy of these modes.

Aviation was reducing emissions per passenger kilometre strongly until around 2004, but has been relatively flat since, and the 2022-23 value is above 2004 levels. This seems a little odd as newer aircraft are generally more energy efficient.

Transport consumer costs

The final category for this post is the real cost of transport from a consumer perspective. Here are headline real costs (relative to CPI) for Australia, using quarterly ABS Consumer Price Index data up to September 2023:

Technical note: Private motoring is a combination of factors, including motor vehicle retail prices and automotive fuel.

The cost of motor vehicles was in decline from around 1995 to 2018 and has been stable or slightly rising since then. Automotive fuel has been volatile, which has contributed to variations in the cost of private motoring.

Urban transport fares (a category which unfortunately blends public transport and taxis/rideshare) have increased faster than CPI since the late 1970s, although they were flat in real terms between 2015 and 2020, then dropped in 2021 and 2022 in real terms – possibly as they had not yet been adjusted to reflect the recent surge in inflation. They picked up slightly in 2023.

The above chart shows a weighted average of capital cities, which washes out patterns in individual cities. Here’s a breakdown of the change in real cost of private motoring and urban transport fares since 1972 by city (note different Y-axis scales):

Technical note: The occasional dips in urban transport fares value are likely related to periods of free travel – eg May 2019 in Canberra.

The cost of private motoring moves much same across the cities.

Urban transport fares have grown the most in Brisbane, Perth, and Canberra – relative to 1972. However all cities have shown a drop in the real cost of urban transport fares in June 2022 – as discussed above.

If you choose a different base year you get a different chart:

What’s most relevant is the relative change between years – e.g. you can see Brisbane’s experiment with high urban transport fare growth between 2009 and 2017 in both charts.

Melbourne recorded a sharp drop in urban transport fares in 2015, which coincided with the capping of zone 1+2 fares at zone 1 prices.

And that’s a wrap on Australian transport trends. Hopefully you’ve found this useful and/or interesting.


How did Perth’s CBD end up with 19% more private transport commuters in 2021?

Sat 3 June, 2023

ABS census data tells us that Perth’s CBD experienced a massive 19% jump in the number of private transport commuter trips between 2016 and 2021. That’s over 5000 more journeys – mostly as car drivers – and is quite likely to have made traffic congestion worse.

So how did that happen? Where were these extra commuters travelling to? Were there particular changes in the modal mix in different parts of the CBD? Was this growth enabled by a big increase in car parking capacity? And what has been happening to car park pricing?

This post digs a little deeper following my last post that explored the impact of COVID on journey to mode shares in Australian cities in 2021.

A quick recap of overall changes in journey to work in the Perth CBD

Here’s the volume of Perth CBD commuters by main mode, including working at home in 2011, 2016, and 2021:

See my last post for my definition of the Perth CBD. A trip involving any public transport is classed as public, a trip that involves only walking or cycling is classed as active, and any other form of travel is classed as private.

At the 2021 census, Perth was COVID-free with relatively few restrictions on intra-state movement or activity.

Total employment in the CBD grew by a massive 26% from 82,214 in 2016 to 103,944 in 2021. Private transport trips increased by 19%, but because this was less growth than overall employment growth there was actually a commuter mode shift away from private transport of 1.6% (from 36.5% to 34.9%).

The biggest increase in CBD worker volumes was in those who worked at home.

Public transport commuting to the CBD increased by only 85 trips between 2016 and 2021, but still accounted for more trips than private transport.

LATE EDIT: It’s just come to my attention that the Fremantle train line was closed on the day of the 2021 census (10 August), which will have suppressed public transport mode share in the western suburbs.

My last post concluded there was likely a significant mode shift from public transport to remote working. There was some mode shift away from public transport and towards remote working and private transport for some middle age groups, although some of this shift is likely to be a normal trend seen as people age (and become parents). I was unable to identify occupations that saw a substantial mode shift from public transport to private transport, although some occupations saw a lot more private transport growth than public transport growth.

This post now takes that analysis a bit further by looking at spatial variations in the modal mix by workplace location.

Where were the extra private transport commuters working?

Here’s the change in private commuter trips for each destination zone around the Perth CBD:

Note: the circles aren’t always drawn in the middle of each destination zone, aren’t intended to highlight any particular location within each zone, and may not be representative of major car park locations.

There were both increases and decreases around the CBD. I’m going to focus in more detail on the following high-growth destination zones that I’ve arbitrarily named by a dominant building, precinct, or bordering streets:

Most of the zones that saw a big increase in private transport commuter trips also saw a big increase in public transport trips.

Capital Square saw jobs more than triple between 2016 and 2021 as a major new development was completed (including the new Woodside headquarters). It had the largest increase in private transport trips, but even more new trips were by public transport. The development includes five levels of car parking on a fairly large site (at least 659 car parks according to some planning documents). It also saw the largest growth in active transport commuter trips of any destination zone in the Perth CBD.

The zone I have labelled Kings Square (which includes Perth Arena and the new Shell and HBF buildings) saw only slightly more new public transport trips than new private transport trips, despite Perth train station being inside the zone.

The Royal Perth Hospital zone had almost all of its net job growth accounted for by private transport, some of which would have been shift workers. This is consistent with my last post that found a large increase in private transport commuters under the “carers and aids” and “health and welfare support” occupation groups. The hospital is directly adjacent to McIver train station, served by multiple train lines.

One mixed-use block between Terrace Road, Victoria Avenue, Adelaide Terrace, and Hill Street had an increase in private trips and a decrease in public trips. It’s difficult to speculate why this occurred due to the diverse mix of land uses.

The Elizabeth Quay zone saw more growth in private trips than public trips, despite being immediately adjacent to Elizabeth Quay train station. I’ve not been able to identify any large new car parks in the area. Car parks immediately north of the development site were offering $25 all-day car parking at the time of writing which I suspect the average employee might not consider particularly affordable.

The Brookfield Place and Central Park zones mostly saw a big increase in the number of remote workers.

Outside the CBD, the biggest decline in private trips was -1863 in a zone near West Leederville station where the Princess Margaret Hospital for Children closed in 2018 (replaced by the Perth Children’s Hospital in Nedlands).

Where was there a shift from public to private transport?

The following map shows destination zones where there was a decline in public transport trips and an increase in private transport trips (no zones showed the opposite flow):

Just under than half of the destination zones around the Perth CBD saw some sort of net shift to private transport, and most of these were very small numbers. In total these zones account for 492 trips within for my definition of the Perth CBD, about 0.5% of all workers. A net shift from public transport explains less than 10% of the total increase in private transport commuter trips.

This is consistent with analysis in my last post (which disaggregated by birth cohorts and occupations) and again suggests the growth in private trips was broadly in line with the overall growth in CBD employment. It also fits with the hypothesis that the biggest mode shift was from public transport to remote working.

Another way of analysing mode shift is to look the percentage change in private transport mode share by zone:

In the western part of the main CBD area there were many zones with a large mode shift away from private transport, and many of these zones had high employment density.

In fact, the next chart shows how employment density and private transport mode share changed between 2016 and 2021 in the Perth CBD, with the thin end of each ‘comet’ being 2016 and the thick end being 2021 (I’ve arbitrarily named several more destination zones based on major landmarks or surrounding streets).

Note: some destination zones include significant land that is not built up (eg parkland, water bodies, and/or freeway interchanges) and these will have understated employment density. This incudes Convention/Exhibition and Elizabeth Quay.

The dominant pattern is that the zones with high and increasing employment density mostly saw declining private transport mode share, although the “Terrace / Hill / Victoria” block was a standout exception having increasing employment density and increasing private mode share.

How did the CBD absorb so many more car commuters?

It’s hard to know for sure but some possible explanations include:

  • New car parking supply: I’ve already mentioned the Capital Square development that included five levels of parking. Locals might know of other new large CBD car parks, but I’ve struggled to identify any large car parks on Parkopedia or Google Maps that didn’t already exist in 2016. Many new office buildings don’t appear to include large car parks.
  • Perth was in a “mining downturn” in 2016: The Perth CBD only added 1.7k jobs between 2011 and 2016, and there was no significant increase in private commuter trips. According to a Property Council report in August 2016, Perth was experiencing very high office vacancy rates (21.8%) and had been experiencing a decline in office space demand that started around 2013. So it seems quite plausible that car parking supply grew between 2011 and 2016, but commuter parking demand only grew strongly after 2016.
  • Reduced short-term parking demand? Perhaps there has been a decline in demand for short-term parking (through the normalisation of online business meetings) enabling more all-day parking. But I’m just speculating.

Someone reading this from the parking industry might be able to share some insights (please add comments).

What’s been happening to Perth CBD car parking prices?

Like Sydney and Melbourne, Perth has a CBD parking levy – an annual fee collected by government per space. Here’s what’s been happening to the levy prices in real terms:

The parking levy increased substantially in real terms in 2010 and again between 2014-2016, but in recent years has not been keeping up with inflation. Between 2016 and 2021 there was almost no real change in the levy.

So what’s been happening to car park prices?

The City of Perth itself operates a large number of CBD car parks and in 2021/22 parking revenue accounted for 36% of its total income (source: budget 2022-23).

Thanks to the incredible resource that is the Wayback Machine, I’ve been able to dig out prices at their CBD car parks right back to 2001-02. For the sake of manageable analysis I’ve focussed on four relatively large central CBD car parks – Concert Hall (399 spaces), Convention Centre (1428 spaces), Elder Street (1052 spaces) and Pier Street (680 spaces). Here’s how those prices have changed over time, in nominal and real terms:

The 2010 and 2015 jumps in the pricing levy were clearly reflected in retail parking prices.

In real terms, parking prices peaked around 2015-2017 and have been in decline since then. Prices for several car parks were cut substantially in 2017/18 – perhaps as a belated response to a reduction in office commuter demand during the mining downturn. Then parking prices were frozen from 2019 to 2022 – presumably due to the pandemic.

So despite the massive increase in CBD parking demand, the City of Perth reduced – rather than increased – all-day parking prices, and so has probably also missed out on significant additional revenue. This has arguably helped facilitate the big increase in commuter traffic volumes, along with the likely associated urban amenity impacts of more traffic in the CBD.

The City of Perth is a democratic local government so it’s probably not going to behave in an entirely economically rational way when it comes to price setting. Prices are also locked in for each financial year so are much less dynamic. So what have commercial parking operators been doing?

Unfortunately I’ve not been able to use the Internet Archive to find historical commercial car parking prices in the Perth CBD back to 2016. What I can tell you is that “flexi” online parking at the Wilson Parking run Central Park car park has risen from $19 in October 2021 to $26 in May 2023 – suggesting commercial operators are not afraid to change their pricing. That said, the Kings Complex car park (517 Hay Street, near Pier Street) has had no increase in its online daily rate between October 2021 and May 2023 ($18).

So what is Perth’s parking policy?

The current Perth parking policy (2014) states:

“This policy recognises that vehicular access to, from and within central Perth is a critical element in ensuring its continued economic and social viability. It also continues to recognise the need to preserve and enhance the city’s environment. The policy aims to address these needs by supporting the provision of a balanced transport network in order to manage congestion and provide for the efficient operation of the transport network to, from and within the city centre.”

I suspect the term “balanced transport” is indicative of not trying to shift travel towards more sustainable, non-car modes. And I guess it would also be hard for the City of Perth to start discouraging something that generates more than one third of its annual revenue. Although an increase in prices might increase revenue, even if it reduces demand.

Furthermore, the Western Australian government is also continuing to widen Perth’s freeways, in the hope this might reduce traffic congestion. I’m not sure many cities have succeeded with such strategies, but good luck Perth!

Finally…

Wasn’t Perth public transport patronage below pre-pandemic levels in 2021?

I noted above that there were just 85 additional public transport commuters to Perth’s CBD in 2021 compared to 2016. But Perth’s overall public transport patronage in August 2021 was around 22%* below that in August 2016. If the number of CBD public transport commuters didn’t decline, the overall patronage decline must represent a mode shift away from public transport for trips to other destinations and/or for purposes other than travelling to work (and/or a decline in the number of such trips made by any mode).

*August 2016 had one more school weekday and one fewer Sunday than August 2021 which means we cannot directly compare total monthly patronage of the two months but they will be fairly close. It would be much cleaner to compare average school weekday patronage figures between months and years, but unfortunately few agencies publish such numbers (Victoria does now).


Update on Australian transport trends (December 2022)

Sat 31 December, 2022

It’s that time of year again when BITRE release their annual yearbook chock full of numbers, and this post aims to turn them into useful information. It’s also a prompter for me to update my feeds of other transport metrics and pull together this post covering the latest trends in licence ownership, motor vehicle ownership, transport emissions, vehicle kilometres, passenger kilometres, freight volumes, and transport pricing.

I’ve been putting out similar posts in past years, and commentary in this post will mostly be around recent year trends. See other similar posts for a little more discussion around historical trends (January 2022, December 2020, December 2019, December 2018).

Driver’s licence ownership

Here is motor vehicle licence ownership for people aged 15+ back to 1971 (I’d use 16+ but age by single-year data is only available at a state level back to 1982). Note this includes any form of driver’s licence including learner’s permits.

Technical note: the ownership rate is calculated as the sum of car, motorbike and truck licenses – including learner and probationary licences, divided by population. Some people have more than one driver’s licence so it’s likely to be an over-estimate of the proportion of the population with any licence.

Overall the trend has been a flattening of licence ownership rates, and indeed Victoria was showing declining licence ownership before the pandemic. The ACT and Northern Territory had much higher rates of licence ownership in the 1970s compared to other states. But then the Northern Territory has maintained lower rates of licence ownership than most other states since the 1990s. The ACT showed very high rates of licence ownership around 2009 to 2017 – not sure if this is real or an artefact of the imperfect data (eg counting people with multiple licences).

Most states saw an uptick in 2021 with the notable exception of Western Australia – a state that was largely COVID-free until early 2022 so any COVID-avoidance incentive to get a driver’s licence might not have been very strong. Licence ownership rates in Queensland and Victoria have somewhat levelled out between 2021 and 2022, perhaps reflecting a return of international arrivals and the end of COVID lockdowns.

Here’s licence ownership by age band for Australia as a whole (to June 2021):

In 2020 and 2021 there was an uptick in ownership for people aged 16 to 29 in particular. Let’s look at the various age bands across the states:

There are some interesting recent trends for people aged 16-19. Victoria saw a big drop in 2020 but then some big increases in 2021 and 2022. South Australia and New South Wales have also seen big increases in recent years.

There were even bigger increases for 20-24 year olds following the start of the pandemic, except Western Australia and the Northern Territory (states that largely avoided COVID in 2021).

Ages 25-29 were similar:

So why have licence ownership rates increased for younger adults? Is it mode shift away from public transport to avoid the risk of COVID infection on public transport? Or is it because non-licence holders left the country?

South Australia and New South Wales publish quarterly licencing data by age band which allows us to see the impact of the pandemic more closely. I’ve combined this with ABS quarterly population data to calculate quarterly licence ownership rates:

South Australia has less historical data published:

The population aged 20-24 declined after March 2019 in both New South Wales and South Australia – a year before the pandemic hit. Then both states saw a more rapid decline after March 2020 – the onset of the pandemic.

However the number of people in this age band with a licence only increased slightly – in line with pre-pandemic trends. That is, the licence ownership rate increased sharply primarily because there was a net loss of non-licence holders.

Here’s a look at Australia’s population by age band:

There are some fairly smooth trends over time in all age bands, but then from 2020 there were some sudden shifts, particularly for age bands 16-19, 20-24, 25-59 and to lesser extent 30-39.

A plausible explanation is that international students and other non-permanent residents left Australia – many could not attend classes and were encouraged to leave Australia by the government of the day. These departures were not replaced by new arrivals as the international borders were essentially closed. Indeed once the borders reopened in early 2022, there was a sharp increase in non-licence holders in New South Wales that sent the motor vehicle licence ownership rate down sharply in March 2022 (June 2022 data has not been published at the time of writing).

Other data shows a sharp fall in the number of international students in Australia between 2019 and 2020, particularly in NSW, Victoria and Queensland (more recent student numbers unfortunately not available at the time of writing):

And there was a dramatic shift to net outbound overseas migration from the June quarter of 2020:

In previous posts (see Why are young adults more likely to use public transport? (an exploration of mode shares by age – part 3) I’ve established that recent immigrants skew to the younger adult ages as Australia generally attracts international students and skilled migrants, which also fits with the hypothesis that there was a great exodus of young adults who didn’t have a driver’s licence.

[Side note: the first quarter of 2022 represented a new record for international migration into Australia as the borders re-opened – almost 98k people.]

It’s entirely plausible that long-time residents also increased their rate of licence ownership during the pandemic, but I think the most likely major explanation is the departure of international students and temporary residents. And so I expect the return of international migration will result in lower licence ownership, car ownership, and increased public transport mode share in 2023.

For completeness, here are licence ownership rate charts for other age groups:

There appear to be a few suspicious outlier data points for the Northern Territory (2019) and South Australia (2016).

To get a better understanding of recent trends, here are quarterly licence ownership rates by age band for New South Wales since mid 2018:

You can see the rise – and more recent fall – in licence ownership rates for the age bands 20-24 and 25-29. There was also a sharp fall for those aged 16-19 in September 2021, possibly due to Sydney entering a long COVID lockdown in the winter of 2021 (perhaps learners permits were not renewed or people didn’t bother applying for them if they could not take lessons). 30-34 year olds showed a small rise in licence ownership from the start of the pandemic and this seems to have been sustained, which might reflect some mode shift to avoid infection risk.

Here’s the same quarterly data for South Australia:

Licence ownership rates rose strongly for those aged 16-34, although there was an initial dip for those aged 16-19 in June-September 2020 around the start of the pandemic. Perhaps it has remained high because international students have not yet returned in great numbers to Adelaide, and/or because of a permanent mode shift towards private transport?

For completeness, here are motor cycle licence ownership rates:

Motorcycle licence ownership has been trending up slightly in New South Wales and Victoria, and slightly down in Queensland, South Australia, Norther Territory and Western Australia.

Car ownership

Thankfully BITRE has picked up after the ABS terminated it’s Motor Vehicle Census, and are now producing a new annual report Motor Vehicle Australia. They’ve tried to replicate the ABS methodology, but inevitably have come up with slightly different numbers in different states for different vehicle types for 2021. So the following charts will show two values for January 2021 – both the ABS and BITRE figures so you can see the reset more clearly. I suggest focus on the gradient of the lines between surveys and try to ignore the step change in 2021.

Between January 2020 and January 2022 most states show an upwards trend in motor vehicles per population aged 18-84 (an imperfect approximation of the driving age population).

However when you look at the stock of cars per state, there was not a significant uptick in the total number of cars – indeed Victoria saw an almost flattening of total motor vehicles between January 2020 and January 2021:

Again, a highly plausible explanation is that non-driving (and non-licence holding) residents departed Australia while long-term residents largely continued their background trends in motor vehicle ownership. We might therefore see a decline in motor vehicle ownership rates in the January 2023 survey with the return of overseas immigration.

Transport Emissions

Australia’s transport emissions have been reduced by COVID lockdowns over the last couple of years but have more recently bounded back:

The above chart showing rolling 12 months emissions which washed out the lockdown period. The next chart shows seasonally-adjusted quarterly data to get around the rolling 12 month averaging – with the September 2022 quarter close to 2019 levels:

Here are Australian transport emissions since 1975:

And in more detail since 1990:

The next chart shows the more recent growth trends by sector:

Aviation emissions saw the biggest decline from the pandemic but were bouncing back in 2021-22. Car and bus emissions have declined in line with pandemic lockdowns whilst most other modes have continued to see growth in emissions.

Here are per-capita emissions by transport sector (note: log scale used on Y-axis):

Truck and light commercial vehicle emissions per capita have continued to grow while many other modes have been declining, including a continued reduction in car emissions per capita since around 2004.

Next up, emissions intensity (per vehicle kilometre):

Curiously the figures suggest a sudden drop in bus emissions per km in 2022, but I am not sure this is plausible as electric buses are still only being rolled out in small numbers. There was also an unexpected dip in emissions per km in 2015 which jumped back up in 2016. The 2015 dip in bus emissions per km is primarily a product of a dip in BITRE’s estimated bus emissions and not bus vehicle kilometres travelled, which is a hard to explain (this bus emissions dip is not seen in AGEIS estimates). I suspect this may be an artefact of BITRE methodological issues.

Emissions per passenger-km can also be estimated:

Car emissions have continued a slow decline, but bus and aviation emissions per passenger km increased in 2021, presumably as the pandemic reduced average occupancy of these modes.

Vehicle kilometres travelled

Vehicle and passenger kilometre figures have been significantly impacted by COVID lockdowns in 2020 and 2021, and so the financial year figures are a mix of restricted and unrestricted travel periods. Accordingly we cannot readily infer new trends from this data, and it should be interpreted with caution.

Total vehicle kms for 2021-22 were lower than 2019-20 and 2020-21:

As per emissions, the biggest declines were in cars, motorcycles, and buses:

Light commercial vehicles and trucks have shown the biggest increase since 1990.

Here’s the view on a per-capita basis:

Vehicle kilometres per capita peaked around 2004-05 and were starting to flatline in some states before the pandemic hit with obvious impacts.

Here is the same data for capital cities (capital city population data comes out only once a year with some delay, so most city data points are only up to financial year 2020-21).

Canberra has dramatically reduced vehicle kilometres per capita since around 2014 leaving Brisbane as the top city.

Once again BITRE have kindly supplied me data on estimated car vehicle kilometres for capital cities that is not included in the yearbook:

Canberra is still on top for car kilometres per person but this rate has been reducing strongly over recently years.

Passenger kilometres travelled

Here are passenger kilometres travelled overall (log scale):

The pandemic had the biggest impact on rail, bus, and aviation passenger kilometres.

Here is the same on a per-capita basis which shows very similar patterns (also a log scale):

Curiously aviation passenger kilometres per capita peaked in 2014, well before the pandemic. Rail passenger kilometres per capita in 2019 were at the highest level since 1975 before the pandemic hit. Only air travel has rebounded on a financial year basis.

Here’s total car passenger kilometres for capital cities:

Melbourne, Sydney, and Canberra were impacted by extensive lockdowns in 2021-22, while the other cities were mostly lockdown free. However the then-unprecedented large wave of COVID cases in the summer of 2021-22 may have led to voluntarily suppressed travel behaviour across many cities.

Here’s car passenger kilometres per capita (again only to 2020-21 for most cities):

It’s hard to estimate any post-COVID trends based on this annual data. However, I have been processing VicRoads traffic signal count data which gives some indication about more recent traffic volumes in Melbourne. The following chart shows the change from 2019 median signalised intersection traffic count volumes per week. I’ve deliberately locked the scale as -20% to +10% as I want to focus on the difference between 2019 and 2022 traffic, and so the 2020 and 2021 lines go off the scale during lockdowns.

It’s very interesting that volumes in late 2022 were about 5% lower than 2019 levels on weekdays (a bit higher on weekends although there’s no such thing as a normal weekend).

And if you look at the time of day profile for Melbourne (below), the biggest reductions have been in the early AM peak, and evenings, while there have been increases during the AM and PM school peaks (which might be a response to COVID infection fear and/or because parents working from home can more easily drive their children to and from school):

Rail Passenger travel

The pandemic has put a large dent in rail passenger kilometres travelled, and these are likely to remain below 2019 for some time as new working-from-home behaviours stick following the pandemic:

Melbourne saw a slight increase in 2021-22, but this was probably more a product of the how long the city was in lockdown during financial years 2020-21 and 2021-22. Sydney saw a reduction in 2021-22 probably because there was little in the way of lockdowns in 2020-21.

Here’s rail passenger kms per capita (again, only up to 2020-21):

Bus passenger kilometres have reduced significantly with the pandemic:

Including on a per-capita basis:

I would expect to see these figure bounce back up as there are unlikely to be any lockdowns during 2022-23.

It would appear that the surge in Darwin bus use due to a major LNG project may have ended.

Mode split

It’s possible to calculate “mass transit” mode share using the passenger kilometres estimates from BITRE (note: it’s not possible to readily differentiate public and private bus travel):

Mass transit mode shares have taken a large dive during the pandemic, and I expect this to be strongly associated with COVID lockdowns where many people – especially central city workers – worked from home. It’s still difficult to know to what extent this is people switching travel modes for ongoing trips, to and what extent it is public transport trips being replaced by staying home. I hope to have more to offer on this subject in an upcoming blog post.

Transport for New South Wales conducts a rolling household travel survey, although it was suspended during COVID lockdowns in 2020 and 2021. Estimated total person trips and kilometres by mode are reported, and from this we can get an idea around mode split (including non-motorised modes):

On this data, the public transport mode share of person kilometres travelled is much higher than that derived from the BITRE data, with a peaking of around 20% before the pandemic.

Unlike Victoria, New South Wales unfortunately does not provide any detailed household travel survey data, which means it is not possible to perfectly calculate public transport mode share (ferry and light rail were bundled with “Other” pre 2020), and it’s also not possible to calculate mode share by trip purpose. All this and more is possible with Victorian published data, but unfortunately post-COVID data will not be published until late 2024.

Freight

This data shows a dramatic inflection point in freight volume growth in 2019, with a lack of growth in rail volumes and a decline in coastal shipping. Much of this volume is bulk commodities, and so the trends will likely be explained by changes in commodity markets, which I won’t try to unpack.

Non-bulk freight volumes are around a quarter of total freight volume, and are arguably more contestable between modes:

2022 saw a sudden flatlining in non-bulk freight volumes, with road increased market share to 80%, seemingly mostly at the expense of coastal shipping:

Air freight tonnages are tiny in the whole scheme of things so you cannot easily see them on the charts.

Transport Costs

The final category for this post is the real cost of transport from a individual perspective. Here are headline real costs (relative to CPI) for Australia, using Q2 ABS Consumer Price Index data up to June 2022:

Technical note: Private motoring is a combination of factors, including motor vehicle retail prices and automotive fuel. Urban transport fares include public transport as well as taxi/ride-share (which possibly move quite independently, which is a little frustrating).

The cost of private motoring mostly declined in real terms from around 2008 to 2020, followed by sharp increases in 2021 and 2022 in line with the rapidly rising cost of automotive fuel. The real cost of motor vehicles has plummeted since 1996, although it bottomed out in 2018.

Urban transport fares (a category which unfortunately blends public transport and taxis/rideshare) have increased faster than CPI since the late 1970s, although they were flat in real terms between 2015 and 2020, then dropped in 2021 and 2022 in real terms – possibly as they had not yet been adjusted to reflect the recent surge in inflation.

The above chart shows a weighted average of capital cities, which washes out patterns in individual cities. Here’s a breakdown of the change in real cost of private motoring and urban transport fares since 1973 by city (note different Y-axis scales):

Technical note: I suspect there is some issue with the urban transport fares figure for Canberra in June 2019. The index values for March, June, and September 2019 were 116.3, 102.0, and 118.4 respectively.

Urban transport fares have grown the most in Brisbane, Perth, and Canberra – relative to 1973. However all cities have shown a drop in the real cost of urban transport fares in June 2022 – as discussed above.

If you choose a different base year you get a different chart:

What’s most relevant is the relative change between years – eg. you can see Brisbane’s experiment with high urban transport fare growth between 2009 and 2017 in both charts.

Melbourne recorded a sharp drop in urban transport fares in 2015, which coincided with the capping of zone 1+2 fares at zone 1 prices.

What does all this mean for post-pandemic transport trends?

I also tackled this question a year ago and my thoughts haven’t changed significantly.

One thing that has become clearer is that the increase in motor vehicle licence ownership and car ownership is very likely related to the lack of recent international immigrants during the pandemic. Therefore the reopening of international borders is likely to push these rates down once more across 2022 and 2023, although they may or may not return to pre-pandemic levels. In turn, this will probably increase public transport patronage and mode share, although it is still likely to remain subdued following the wide scale acceptance and adoption of working from home, particularly for central city workers.

A key question for me is the extent to which commuter trips have shifted from public to private transport, as opposed to simply disappearing as many more people work from home. I’ll have more to say on this soon in an upcoming post about 2021 census journey to work data.


Update on Australian transport trends – January 2022

Sun 23 January, 2022

Once again, the good folks at the Bureau of Infrastructure, Transport and Regional Economics (BITRE) have published their annual yearbook chock full of data just before Christmas. This annual post aims to turn the numbers into insights about transport trends in Australia.

I’ll cover vehicle kilometres, passenger kilometres, mode shares, car ownership, driver’s licence ownership, greenhouse gas emissions, and transport costs. This year there’s also a new section of freight volumes and mode shares.

While most data series are available up until 2020-21, at the time of writing there were only June 2021 estimates of population for states and territories, not cities. So most charts for cities will end at 2019-20, the financial year in which the COVID19 pandemic had significant impacts for only the last third (i.e. from March 2020).

I will finish the post with some thoughts about what the data suggests for post-pandemic transport trends. Settle in, there are quite a few charts!

Vehicle kilometres travelled

Total vehicle kms travelled in Australia increased slightly in 2020-21, after a small but significant fall in 2019-20 due to the pandemic.

Here’s the percentage growth by vehicle type since 1971:

Light commercial vehicles have seen the largest growth overall since 1971, followed by buses (mostly in the 1980s), with motorcyles having the least growth.

In percentage terms, buses saw the largest decline in vkms with the pandemic (I’m guessing largely related to charter and tour operations), but there were also substantial declines for cars and motorcycles as people endured lockdowns and borders were closed. There was no clear impact on trucks and only a small impact on light commercial vehicles. All vehicle types except buses rose in total vehicle kms in 2020-21.

Vehicle kilometres travelled per capita

Here’s a view at the state and national level:

Vehicle kms per capita peaked in all states in 2004 or 2005 and have declined since then, with some variation between states.

Vehicle kms per capita were highest in Queensland and Western Australia, and lowest in the Northern Territory, followed by New South Wales, South Australia and the ACT – at least until the COVID19 pandemic.

All states saw a big reduction in 2019-20 with the pandemic (although less so in the NT which I understand didn’t lock down), and things bounced up in 2020-21 in all states except Victoria – no doubt due to a long lockdown in the second half of calendar 2020 due to a second wave of COVID19.

Similar patterns were seen in cities (data for most cities is only until 2019-20). Before the pandemic, Melbourne and Sydney showed the biggest declines in vehicle kms per capita.

BITRE have been kind enough to supply me with estimates of car vehicle kilometres for cities (not yet part of the yearbook data), which show similar patterns:

Passenger kilometres travelled

Firstly here are passenger kilometres travelled at the national level – and note I have used a log-scale on the Y-axis.

The COVID19 pandemic brought massive reductions in rail, bus, and air passenger kilometres travelled, and a smaller reduction in car passenger kilometres. This will likely reflect a significant proportion of the workforce shifting to working at home, an aversion to shared transport, and the closure of interstate borders during the pandemic.

Prior to the pandemic, there was a massive increase in air travel between the mid-1980s and the early 2010s, and rail saw strong growth from 2005.

Here’s passenger kms per capita:

Car passenger travel per capita peaked in 2004, and domestic air travel per capita peaked around 2014. Bus travel per capita peaked in 1990, the same year aviation was significantly disrupted by a pilot’s strike. Rail passenger travel was growing strongly until the pandemic hit.

The next sections will look at passenger kms (total and per capita) for capital cities, by mode.

Car passenger travel

After a long run of strong growth, the pandemic brought declines in car travel in all cities in 2019-20. There was a bounce back in 2020-21, except Melbourne which saw a further decline to 17% below 2019-20 levels (roughly equal to 2003 levels), no doubt due to COVID19 lockdowns. 2020-21 car passenger kms in Perth, Adelaide, and Brisbane were above 2019-20 volumes, suggesting a snap back to the growth trend.

All cities saw a significant decline in car passenger kms per capita in 2019-20, due to the pandemic.

The longer-term trend shows peaking of car use in 2004 or 2005 in all cities.

Rail passenger travel

There were massive reductions in (heavy) rail passenger kms in both 2019-20 and 2020-21 with the COVID19 pandemic, as many central city workers shifted to working from home and cities went into lockdown.

Just before the pandemic, Sydney’s rail passenger kms were rocketing up. Sydney’s rail network carries significantly larger volumes than Melbourne despite having almost the same population.

Before the pandemic, rail passenger kms per capita were increasing in Sydney, declining in Melbourne, and increased slightly in other rail cities in 2018-19. Things obviously changed with the pandemic in 2019-20.

Here is growth in rail passenger kms since 2010:

Pre-pandemic, Adelaide and Sydney has the strongest growth relative to 2010, while Brisbane had the least. However the chart would look quite different with a different base year (eg Perth would look worst on a base year of 2013). Adelaide train patronage was significantly impacted in the period 2011-2014 by electrification and other upgrade works that involved extended line closures.

Bus passenger travel

Sydney has the highest bus use of all Australian cities. It’s worth noting that Melbourne is unique in that trams dominate inner city radial street-based public transport, resulting in a lower rate of bus use compared to other cities.

All cities saw big bus patronage reductions with the pandemic, with Melbourne bus usage falling below than of Brisbane in 2020-21.

In per capita terms, Darwin has seen a massive increase in bus use due to a large staff bus network being created for a major LNG project just outside of Darwin.

Sydney overtook Brisbane for bus use per capita in 2017-18, perhaps due to some service investment, network reform, and/or reduced transfer penalties from fare reform. Brisbane saw massive increases in bus usage between 2004 and 2012, likely related to the expansion of the busway network and some service upgrades (including “BUZ” routes), which might then have been eroded by significant fare hikes.

Growth in bus passenger kms since 2010 shows these patterns in another way:

Pre-pandemic, Sydney and Canberra were showing particularly strong growth. Perth peaked in 2014 – which might be partly explained by a decentralisation of employment (see: What might explain journey to work mode shifts in Australia’s largest cities? (2006-2016)).

Again, these types of charts would look quite different if a different reference year was applied.

Light rail passenger travel

Melbourne has by far the largest light rail network, so little surprise it has the highest passenger kms. None of these light rail networks are designed to serve the entire city, so we need to be cautious comparing cities, and I won’t provide a per capita chart.

Despite the COVID19 pandemic, Sydney saw an increase in light rail use in 2019-2020, which would reflect the opening of the new south-eastern lines to Randwick and Kingsford in December 2019.

Motorcycle passenger travel

Motorcycle travel had a dip in the 1990s on these figures, then picked up strongly in the early 2000s. The patterns in 2019-2021 are similar to car passenger travel.

On this data, Melbourne bucked the trend of other cities in 2006 and started a decline in motorcycle travel. However all these figures are estimates only, and I would not be surprised if there were some “broad” assumptions behind the estimates, as motorcycle travel doesn’t usually get a lot of measurement attention, and most of the cities are estimated to have remarkably similar trends.

Mass transit mode share of passenger kilometres

It is possible to calculate the ratio of “mass” transit passenger kms (rail, light rail, ferry, and bus) against total passenger kms in cities, which essentially provides a mode share. Note however that this will include estimates of private bus travel, so it’s not exactly public transport mode share, but probably not far off.

The pandemic has led to significant falls in mass transit mode share in all cities, with perhaps the largest reduction in Melbourne (again, likely related to the second wave lockdown in 2020-21).

As I’ve shown on this blog several times, a significant portion of public transport travel is around journeys to work and education in city centres, a trip type that became a lot less frequent during the pandemic as people work and learn from home. The removal of these trips from total travel has undoubtedly shifted the overall mode share calculation.

What’s not yet clear to me is the extent to which trips not suppressed by the pandemic might have shifted from public to private transport, and whether these trips might shift back to public transport “after” the pandemic (assuming there comes a time when there is no longer heightened infection fear).

Car ownership

The following charts use vehicle count data from the ABS Motor Vehicle Census, with January 2021 unfortunately the last census taken (although hopefully Austroads take over in 2022). I’ve calculated per capita car ownership using interpolation from the most recent ABS population estimates at the time of writing.

Not everyone is of driving age, so I usually also look at motor vehicles per 100 residents aged 18-84, as an approximate representation of people of driving age:

Here’s a closer look at the last few decades:

Motor vehicle ownership has risen considerably since the survey began. However from around 2017 until the pandemic it actually decreased in most Australian states and territories (Tasmania an exception).

There has been a small but significant uptick in motor vehicle ownership in January 2021 in all states. As I mentioned in my recent blog post on motor vehicle ownership by age, I see two likely main reasons for this:

  • A lack of recent international immigrants during the pandemic – who generally have very low rates of motor vehicle ownership in the first years in Australia, and are skewed towards young adult age bands which themselves also have lower rates of motor vehicle ownership in general.
  • A mode shift from public transport, as people want to avoid the risk of catching COVID19 on public transport (whether this risk is large or small). However with working/learning from home, it’s hard to know how much of this is mode shift of continued trips, versus trips of certain modes not being made as often.

Motorcycle ownership

This chart shows a slightly different pattern to that of motorcycle passenger kilometres per capita in cities (above). Ownership and usage bottomed out around the 1990s or 2000s (depending on the state/city). However ownership has risen in most states since then, but usage apparently peaked around 2009 in most cities. This perhaps suggests motorcycles are now more a recreational – rather than everyday – vehicle choice. But I really don’t follow motorcycle trends closely so cannot be too sure.

Driver’s licence ownership

Thanks to BITRE Information Sheet 84, the BITRE Yearbook 2021, and some useful state government websites (NSWSAQld), here is motor vehicle licence ownership per 100 persons (of any age) from June 1971 to June 2020 or June 2021 (only some state agencies have published 2021 data at the time of writing):

Technical note: the ownership rate is calculated as the sum of car, motorbike and truck licenses – including learner and probationary licences, divided by population. Some people have more than one driver’s licence so it’s likely to be an over-estimate of the proportion of the population with any licence.

There’s been slowing growth over time, although Victoria has actually seen slow decline since 2011, and the ACT peaked in 2016.

However in both states with 2021 data (South Australia and New South Wales) there was a significant uptick in 2021 of more than 1 licence per 100 people. This is likely related to the pandemic – either more people opting for a driver’s licence to shift away from shared modes, and/or a lack of recent immigrants (many were young adults) who usually take some time to get their licence. I would not be surprised to see similar trends in other states when data is made available.

Here’s a breakdown by age bands for Australia as a whole:

Licencing rates had been increasing over time for those aged over 40 (most strongly for those aged over 70) up until 2019, but that changed for the 60-69 and 70-79 bands in 2020.

Licencing rates had been declining for those aged under 40 until 2019, although there was a notable uptick in licence ownership for 16-19 year-olds in 2018, and increases in 2020 for those aged 20-29.

However the above charts show national trends that can wash out variations at the state level. So let’s break it down for states per age band:

Licence ownership rates for teenagers has been declining significantly in Victoria, with a large fall in 2020. There were also declines in 2020 in Tasmania, South Australia and Western Australia. NSW had a significant increase in 2020, and even more so in 2021.

Note: the differences between states for this age band at least partly reflect different minimum ages for licencing.

The largest states of Victoria and New South Wales were trending downwards until 2019, but have since shot back up, quite spectacularly in NSW. This might partly reflect the absence of new immigrants who generally have low levels of driver’s licence ownership. There may also be issues with ABS’s population estimates in the unprecedented pandemic.

All states showed an increase in 2020 except the Northern Territory.

Victoria and New South Wales did have a downwards trend in this age band, but that turned around in 2020. Tasmania and the ACT have shot up since 2017.

Licence ownership for those in their 30s had been declining in NSW, SA, WA and Victoria up to 2020, with NSW again showing an uptick in 2021. Tasmania has seen strong growth in recent years.

Licence ownership for those in their 40s was declining slightly in SA, Victoria, and WA until 2020, but was still very high. NSW had a smaller uptick in this age band in 2021, compared to younger age bands.

Licence ownership for those in their 50s was declining slightly until 2020 in most states (except Queensland and Tasmania). NSW had a relatively small uptick in 2021 compared to younger age bands.

Licence ownership for those in their 60s was slowly growing in most states until 2019 but then fell in 2020 with the pandemic. The 2021 uptick in NSW did not fully recover from the drop in 2020.

Licencing rates for those in their 70s have been growing strongly in all states (except recently in WA). NSW saw a dip in 2020, but bounced back in 2021. I suspect a data error for NT in 2019.

Licencing rates for those over 80 were increasing in most states to 2020, and NSW only had a small dip in 2020.

New South Wales is the first state to give us insights into the impact of the pandemic, so here is a look at the licencing trends per age band in that state:

You can see more clearly the big growth for those aged under 30 (people who generally used public transport more often before the pandemic), whilst older age groups (60+) saw a temporary decline in licence ownership in 2020 with a bounce-back in 2021.

See also an older post on driver’s licence ownership for more detailed analysis.

For completeness, here is a chart showing motorcycle full licence ownership rates:

Queensland has two types of motorcycle licence and I suspect many people hold both, which might explain a licence ownership rate being so much higher than other states.

Freight

There has been a massive increase in domestic freight volumes since the 1970s, and according to this data, rail has accounted for most of this growth in recent decades. However keep in mind that a majority of these freight-kilometres are bulk commodities (such as iron ore, coal, and grain) which are ideally suited to energy-efficient rail and coastal shipping. Indeed in 2020-21, road transport only moved 11% of bulk goods, and 93% of rail freight movements were bulk goods.

Here are the volumes for non-bulk freight movements, which are arguably more contestable:

And non-bulk freight mode shares:

Road transport dominates non-bulk freight movements in Australia, while air freight is trivial in terms of volume (but probably non-trivial in terms of value). Coastal shipping’s mode share fell significantly in the late 1970s and early 1980s but has remained mostly around 4-6% since then.

Rail transport’s mode share of freight movements declined in the 1970s and 1980s, had a small peak of 22% in 2006, but has fallen back to 16% in 2021. That’s despite the estimated rail freight volume in 2020-21 being the highest of any year reported – it’s just that road volumes have grown even more.

Transport greenhouse gas emissions

Total emissions

According to the latest quarterly figures, Australia’s domestic non-electric transport emissions peaked in around 2018, and had been slightly declining ahead of the COVID19 pandemic.

The above chart showing rolling 12-month figures, which hides the big and sudden changes in recent quarters. So here’s a look at seasonally-adjusted transport emissions by quarter:

Data available at the time of writing was to June 2021, a quarter with fewer impacts from the pandemic (there were some lockdowns in Melbourne). As pandemic conditions eased (before the COVID19 delta wave in the second half of 2021), transport emissions shot back up to near-2019 levels. I expect we will see a decline in the September 2021 data as Victoria and NSW experienced COVID lockdowns. Reductions in Australia’s transport emissions so far appear to be only temporary.

The next chart shows a long term trend of rapid rising annual transport emissions (according to BITRE data):

A more detailed breakdown of road transport emissions is available from 1990 onwards:

To better see the trends per mode, here is net growth since 1975:

Domestic aviation emissions have seen the biggest reduction from the COVID19 pandemic, followed by road emissions. Rail and marine emissions have also shown a decline in the last two years, however I cannot be certain to what extent this is due to the pandemic.

Road emissions grew steadily until 2019, while aviation emissions took off around 1991 (pardon the pun). You can see that 1990 saw a lull in aviation emissions, probably due to the pilots strike around that time.

In the years before the pandemic, non-electric rail emissions grew strongly, mostly driven by increases in bulk freight volumes (as discussed above). I suspect the small decline in rail emissions in recent years is unlikely to be related to diesel passenger trains (most of which have continued to run to normal timetables during the pandemic).

The next chart shows growth by sector since 1990 (including a more detailed breakdown of road transport):

This data suggests the pandemic has had no impact on truck emissions, but has reduced car, bus, and light commercial vehicle emissions.

Per capita emissions

While per capita emissions aren’t directly relevant to climate change impacts, it is interested to look at whether emissions growth has decoupled from population growth for different modes. Note I’ve used a log scale on the Y-axis.

Per capita car emissions for all modes except trucks have been in decline in recent years – and more so with the pandemic. Aviation and bus emissions per capita have fallen the most with the pandemic.

Emissions intensity

We can also calculate emissions per vehicle kms travelled. I’ve labelled the value estimates for 2021 (note again a log scale on the Y axis).

There has been a slow decline in emissions per km for cars, motorcycles and buses, while light commercial vehicles remain flat, and emissions per truck km have increased (although average truck loads have also increased over time).

I’d like to be able to calculate freight emissions intensity per tonne-kilometre by mode, but it’s hard to do that sensibly with the available data (eg rail emissions are not split by freight and passenger, and many flights carry both passengers and freight).

Transport costs

The final category for this post is the real cost of transport from a individual perspective. Here are headline real costs (relative to CPI) for Australia, using ABS data:

Technical note: Private motoring is a combination of factors, including motor vehicle retail prices and automotive fuel. Urban transport fares include public transport as well as taxi/ride-share (which possibly move quite independently, which is a little frustrating).

The cost of private motoring has tracked relatively close to CPI, although it seems to be trending down since 2008, probably largely related to reductions in the price of automotive fuel (which peaked in 2008). The real cost of motor vehicles has plummeted since 1996, although it may have bottomed out in 2018.

Urban transport fares have increased faster than CPI since the late 1970s, although they have grown slower than CPI (on aggregate) since 2013.

However the above chart shows a weighted average of capital cities, which washes out patterns in individual cities.

Here’s a breakdown of the change in real cost of private motoring and urban transport fares since 1973 by city (note different Y-axis scales):

Technical note: I suspect there is some issue with the urban transport fares figure for Canberra in June 2019. The index values for March, June, and September 2019 were 116.3, 102.0, and 118.4 respectively.

Urban transport fares have grown the most in Brisbane, Perth and Canberra – relative to 1973.

However if you choose a different base year you get a different chart:

What’s most relevant is the relative change between years – eg. you can see Brisbane’s experiment with high urban transport fare growth between 2009 and 2017 in both charts.

Melbourne recorded a drop in urban transport fares in 2015, which coincided with the capping of zone 1+2 fares at zone 1 prices.

What do these trends suggest for post-pandemic transport?

There are some emerging trends in the data above that suggest a shift towards private transport:

  • An uptick in driver’s licence ownership in 2021 evidenced in NSW and South Australia, and likely replicated in other states (data not yet available). The increases were sharpest for young adults, normally a natural market for public transport. Motor vehicle licence ownership has a strong relationship with mode choice, and even if/when the fear of infection on public transport is gone, there may be some people who stick to habits formed during the pandemic. See also: Why are younger adults more likely to use public transport? (an exploration of mode shares by age – part 2)
  • Likewise, an uptick in motor vehicle ownership in all states in 2021 could also see some people sticking to new driving habits formed during the pandemic. Again, see Why are younger adults more likely to use public transport? (an exploration of mode shares by age – part 2)
  • The biggest reductions in transport volumes were seen in public transport, no doubt strongly associated with office workers switching to working from home during the pandemic (a large portion of whom work in CBDs). They will likely not return to working in the office as frequently as they did before the pandemic, and this may see future public transport patronage and mode share lower than pre-pandemic projections. In other analysis (not yet published here sorry) I’ve found high rates of pre-pandemic public transport use amongst occupations that are most likely amenable to working from home.

However a shift to private transport will hit headwinds if traffic congestion rises (a highly effective form of demand management) and/or car parking prices increase.

Also, the resumption of international migration will probably see an influx of people who are less likely to own and use private vehicles, at least in their early years of living in Australia (see: Why were recent immigrants to Melbourne more likely to use public transport to get to work?) – although this may depend on their perspectives of infection risk.

I think a key issue will be whether a heightened fear of infection can ultimately be removed on public transport, which would enable people to switch back to using public transport, or resume making trips where public transport is/was the “default” mode for many (eg commuting to CBDs).

A sustained mode shift to private transport following the pandemic could have significant consequences for increasing traffic congestion and transport emissions (not to mention many other issues).