What explains variations in journey to work mode shares between and within Australian cities?

Thu 6 December, 2018

Private and public transport journey to work mode shares vary considerably both between Australian cities and within them. Are these differences related to factors such as population density, motor vehicle ownership, employment density, proximity to train stations, proximity to busway stations, jobs within walking distance of homes, and distance from the city centre?

This posts sheds some light on those relationships for Australia’s six largest cities. I’m afraid it isn’t a short post (so get comfortable) but it’s fairly comprehensive (over 30 charts).

I should stress up front that a strong relationship between a certain factor and high or low mode shares does not imply causation. There are complex relationships between many of these factors, for example motor vehicle ownership rates are generally lower in areas of higher residential density (which I will also explore), and more factors beyond what I will explore here.

If you are interested in seeing spatial mode share patterns, see previous posts for Melbourne, Brisbane, and Sydney. You might also be interested in my analysis explaining the mode shifts between 2011 and 2016.

Population density

Higher population densities are commonly associated with higher public transport use. This stands to reason, as high density areas have more potential users per unit of area, but also higher density is likely to mean high land prices, which in turn increases the cost of residential parking. But higher public transport mode share can only happen if government’s invest in higher service levels, and this isn’t guaranteed to happen (although it often does, through pressures of overcrowding).

My preferred measure is population weighted density, which is the weighted average density of land parcels in a city, weighted by their population (this gets around problems of including sparsely populated urban land). I’ve measured it at census district (CD) geography for 2006 and Statistical Area Level 1 (SA1) geography for 2011 and 2016, using 2011 Significant Urban Area boundaries to define cities. The 2006 density figures are not perfectly comparable with 2011 and 2016 because CDs are slightly larger than SA1s, so the density values will be calculated as slightly smaller.

Here is the relationships at city level (the thin end of each worm is 2006 and the thick end 2016, with 2011 in the middle):

The relationship is very strong for Melbourne and Sydney over time. Between 2011 and 2016, Perth and Brisbane saw increased population density but reduced public transport mode share (mostly because of changes in the distribution of jobs between the centre and the suburbs).

Brisbane was a bit of an outlier in 2006 and 2011 with high public transport mode share relative to its lower population density.

Canberra is also perhaps a bit of an outlier, with much lower public transport mode share compared to similarly low density cities. This might be explained by the smaller total population, lower jobs density, and lack of rapid public transport services segregated from traffic.

But Canberra does have higher active transport mode share, so it’s worth doing the same analysis with private transport mode shares:

Brisbane was still an outlier in the relationship in 2006 and 2011, but Canberra is more in line with other data points.

Another interesting note is that Canberra went from being the least dense city in 2006 to the third most dense in 2016.

Drilling down to SA2 geography (SA2s are roughly the size of a suburb), here’s a chart showing all SA2s in all cities across the three census years (filtered for CDs and SA1s with at least 5 persons per hectare). I’ve animated it to highlight one city at a time so you can compare the cities, and I’ve used a log scale on the X-axis to spread out the data points (only the Sydney and Melbourne CBDs go off the chart to the right).

(if these animated GIF charts are not clear on your screen, you can click to enlarge the image, then use “back” to come back to this page).

You can see a fairly strong relationship, although it is very much a “cloud” rather than a tight relationship – there are other factors at play.

What I find interesting is that Sydney has had a lot of SA2s with population weighted densities around 50-100 but private mode shares over 55% (toward the upper-right part of the cloud of data points) – which are rare in all other cities. That’s a lot of traffic generation density, which cannot be great for road congestion. In a future post I might focus in on the outlier SA2s that are in the top right of these charts (can public transport do better in those places?).

In case you are wondering about the Brisbane SA2 with low density and low private transport mode share (middle left of chart) it is the Redland Islands where car-carrying ferries are essential to get off an island, and are counted as public transport in my methodology. The Canberra outlier in the bottom left is Acton (which is dominated by the Australian National University).

Employment density

I’ve calculated a weighted job density in the same way I’ve calculated population weighted density, but using Destination Zones (which can actually be quite large so it certainly isn’t perfect). Weighted job density is a weighted average of job densities of all destination zones, weighted by the number of jobs in each zone. In a sense it is the density at which the average person works

(technical notes: I’ve actually only counted jobs as people who travelled on census day and reported their mode(s) of travel. Unfortunately I only have 2006 data for Sydney and Melbourne)

This chart suggests a very strong relationship at the city level, with all cities either moving up and left (Adelaide, Perth and Brisbane) or down and right (Sydney, Melbourne, Canberra).

So is the relationship as strong when you break it down to the Destination Zone level? The next chart shows jobs density and private mode share for all destination zones for 2016. Note that there is a log scale on the x-axis, and Adelaide dots are drawn on top of other cities in the top left which explains why that dense cloud of dots appears mostly green.

There’s clearly a strong relationship, although again the data points form a large cloud rather than tightly bunch around a line, so other factors will be at play.

It’s also interesting to see that the blue Sydney dots are generally lower than other cities at all job densities. That is, Sydney generally has lower private transport mode shares than other cities, regardless of employment density.

Which leads us to the next view: the private transport mode shares for jobs in different density ranges in each city for 2011 and 2016.

(click to enlarge if the chart appears blurry)

You can see a fairly consistent relationship between weighted job density and mode shares across all cities in both 2011 and 2016.

At almost all job density ranges, Sydney had the lowest average private transport mode share, while Adelaide and Perth were generally the highest (data points are not shown when there are fewer than 5 destination zones at a density range for a city). This shows that something other than jobs density is impacting private transport mode shares in Sydney. Is it walking catchment, public transport quality & quantity, or something else?

For more on the relationship between job density and mode share, see this previous post.

Proximity to public transport

Trains generally provide the fastest and most punctual public transport services (being largely separated from road traffic and having longer stop spacing), and are the most common form of rapid transit in Australian cities. So you would expect higher public transport mode shares around train stations.

Here is a chart showing average journey to work public transport mode shares by home distance from train stations. It’s animated over the three census years, with a longer pause on 2016.

Technical note: A limitation here is that I’ve measured all census years against train stations that were operational in 2016 – so the 2006 and 2011 mode shares will be under-stated for the operational stations of those years. For example, in Melbourne the following stations opened between 2011 and 2016: Williams Landing, South Morang, Lynbrook, and Cardinia Road.

You can see that public transport shares went up between 2006 and 2011 in most cities at all distances from train stations. In both Perth and Brisbane there were new train lines opened between 2006 and 2011, which will explain some of that growth.

But if you watch carefully you will see public transport mode shares near train stations fell in both Brisbane and Perth between 2011 and 2016. That is, there was a mode shift away from public transport, even for people living close to train stations. As discussed previously, this is most likely related to there being only small jobs growth in the CBDs of those cities between 2011 and 2016, compared to suburban locations.

You can also see that public transport mode shares aren’t that much higher for areas near train stations in Adelaide (I’ll come back to that).

We can do the same for train mode shares (any journey involving train):

Again, Sydney’s train stations seem to have the biggest pulling power, while Adelaide’s have the least.

Busways are the other major form of rapid transit in Australian cities, with major lines in Brisbane, Sydney and Adelaide. Here is a chart of public transport mode share by distance from busway stations, excluding areas also within 1.5 km of a train station:

Note for Adelaide this data only considers suburban stations on the O-bahn, and not bus stops in the CBD. For Sydney all “T-Way” station are included, plus the four busway stations on the M2 motorway for which buses run into the CBD (but not the relatively short busway along Anzac Parade in Moore Park). Sydney’s north west T-Ways opened in 2007

Proximity to a busway station appears to influence public transport mode share strongly in Brisbane and Adelaide, where busways are mostly located in the inner and middle suburbs and cater for trips to the CBD. Sydney’s busway stations are in the “outer” western suburbs, feeding Blacktown, Parramatta, but also relatively long distance services to the Sydney CBD via the M2.

Curiously, public transport mode shares were higher in places between 3 and 5 km from busway stations in Sydney, compared to immediately adjacent areas. I’m not sure that I can explain that easily, but it suggests equally attractive public transport options exist away from busway and train stations.

The station proximity influence appears to extend around 1 km, which possibly reflects the fact that few busway stations have park and ride facilities, and are therefore more dependent on walking as an access mode (although cycling may be another station access mode).

Over time Sydney public transport mode share lifted at all distances from busway stations, while in Brisbane it rose in 2011 and then fell again in 2016, in line with other city mode shares.

So are busway stations similar to train stations in their impact on public transport mode share? To answer this I’ve segmented cities into areas near train stations, near busway stations, near both, and near neither. I’ve used 1.5 km as a proximity threshold that might represent an extended walking catchment.

In Sydney, train stations appear to have a much stronger influence on public transport mode shares than busway stations, but the opposite is true in Brisbane and Adelaide. This possibly reflects the much higher service frequencies on Adelaide and Brisbane busways compared to their trains, and the fact Sydney’s busway stations are so far from the CBD (and thus have fewer workers travelling to the CBD where public transport dominates mode share).

Also of note in this chart is that for areas more than 1.5 km from a train or busway station, Sydney had a much higher public transport mode share compared to the other cities. These areas will be served mostly by on-road buses, but also some ferries and one light rail line. Adelaide has the least difference between mode share for areas near and not-near train or busway stations.

We can do the a similar analysis for workplaces:

The most curious pattern here is Adelaide – where public transport mode share was highest for jobs between 1.5-2.5 kms from train stations. This distance band is dominated by the centre of the Adelaide CBD (the station being on the edge, arguably a “corner”), for which bus was the dominant public transport access mode. Also, there was no destination zone small enough near Adelaide central train station to register as 0 – 0.5 km away, and only one that is 0.5 – 1 km away (I use distances between station data points and destination zone centroids). So the results might look slightly different if smaller destination zones were drawn in the Adelaide CBD.

In all other cities there was a very strong relationship between train station proximity and public transport mode share, as you would expect. And Sydney again stands out with high public transport mode shares for workplaces more distant from train stations.

If you are wondering, the bump in Sydney at 2.5 to 3 km includes the Kensington / Randwick area which has high employment density and a strong bus connection to the central city (partly assisted by the Anzac Parade busway). And the relatively high figure for Melbourne at 1 – 1.5 km includes parts of Docklands, Parkville, Southbank, and St Kilda Road, which all have high tram service levels.

Unfortunately destination zones around busway stations are generally too large to provide meaningful insights so I’m not presenting such data.

Motor vehicle ownership

It will come as little surprise that there is a relationship between household motor vehicle ownership and journey to work mode shares.

Here’s a summary chart for each city for the 2006, 2011 and 2016 censuses:

There appears to be a fairly strong relationship between the two factors at city level.

Sydney and Melbourne have seen the largest mode shift away from private transport, but only Melbourne has also seen declining motor vehicle ownership rates.

Canberra saw only weak growth in motor vehicle ownership between 2011 and 2016, and at the same time there was a shift away from private transport (and a large increase in population weighted density).

Perth and Brisbane saw increasing private transport mode share and increasing motor vehicle ownership between 2011 and 2016.

Here’s a more detailed look at the relationship over time for Melbourne at SA2 geography:

The outliers on the upper left are generally less-wealthy middle-outer suburban areas (lower motor vehicle ownership but high private mode share), while the outliers to the lower-right are wealthy inner suburbs where people can afford to own plenty of motor vehicles, but they didn’t use them all to get to work.

In the bottom left of the chart are inner city SA2s with declining private mode share and declining motor vehicle ownership. For motor vehicle ownership rates around 70-80 (motor vehicles per persons aged 18-84), there are many SA2s with private mode shares that declined 2006 to 2016, but not significantly lowering motor vehicle ownership rates. That suggests that just because people own many motor vehicles, they don’t necessarily use them to drive them to work.

Here is the same data for Sydney:

There are many SA2s with motor vehicle ownership rates around 50 to 70 where the private mode shares are dropping faster than motor vehicle ownership. But there are also many areas with high private mode shares and increasing rates of motor vehicle ownership.

How do the other cities compare? Here are all the SA2s for all cities on the same chart, with alternating highlighted cities:

You can see big differences between the cities, but also that Brisbane and Perth have many SA2s with very high private mode share and rapidly increasing motor vehicle ownership (ie moving up and right, although it’s a little difficult to see with so many lines overlapping). Melbourne and Sydney have plenty of SA2s moving down and left – reducing motor vehicle ownership and declining private transport mode share (which may make some planners proud).

Of course there will be a relationship between motor vehicle ownership and where people choose to live and work. People working in the central city may prefer to live near train stations so they can avoid driving in congested traffic to expensive car parks. People who prefer not to drive might choose to live close to work and/or a frequent public transport line. People who are happy to drive to work in the suburbs might avoid higher priced real estate near train stations or the inner city.

As an aside, we can compare total household motor vehicles to the number of people driving to work, to estimate the proportion of household motor vehicles actually used in the journey to work. Here is Melbourne:

SA2s with a lower estimate are generally nearer the CBD, are wealthier areas, have reasonable public transport accessibility, and/or might be areas with a higher proportion of people not in the workforce (for whatever reason). The areas where the highest proportion of motor vehicles are required for the journey to work are relatively new outer suburbs on the fringe (perhaps suggesting forced car ownership), where adult workforce participation is probably high and public transport accessibility is lower.

The proportion of cars used in the journey to work declined on average in many parts of Melbourne. Given that motor vehicle ownership rates in Melbourne barely changed between 2011 and 2016, this probably represents people mode shifting, rather than people acquiring more motor vehicles even though they don’t need them to drive to work.

Jobs within walking distance of home

It stands to reason that people would be more likely to walk to work if there were more work opportunities within walking distance of their home.

For every SA1 I’ve measured how many jobs are approximately within 1 km as a notional walking catchment (measured as the sum of jobs in destination zones whose centroid are within 1 km of the centroid of each home SA1, so it is not perfect). Here’s the relationship with walking mode share:

(there are a lot of dots overlapping in the bottom left-corner and Adelaide dots have been drawn on top so try not to get thrown by that).

You don’t have to have a lot of nearby jobs to get a higher walking mode share, but if you do, you are very likely to get a high walking more share. The exceptions (many jobs, but low walking share) include many parts of Parramatta (Sydney), and areas separated from nearby jobs by water bodies or other topographical barriers (eg Kangaroo Point in Brisbane).

Workplace distance from the city centre

As was seen in a previous post, workplaces closer to city centres had much lower private transport mode shares, which is unsurprising as these are locations with generally the best public transport accessibility, high land values that can lead to higher car parking prices (which impact commuters who pay them), and often higher traffic congestion.

Here is a chart showing private transport mode share by workplace distance from the city centre. I’ve used faded lines to show 2011 and 2006 results (2006 only available for Sydney and Melbourne).

Here’s a chart that shows the mode shifts between 2011 and 2016:

Inner Melbourne had the biggest mode shifts away from private transport (particularly in Docklands that falls into the 1-2 km range, which saw significant employment and tram service growth), but Sydney had more consistent mode shifts across most distances from the city centre. Adelaide and Canberra saw mode shifts away from private transport in the inner city but towards private transport further out.

Brisbane and Perth saw – on average – a mode shift to private transport across almost all distances from the city centre, with the highest mode shift to private transport in Brisbane actually for the CBD itself(!).

Home distance from the city centre

There’s unquestionably a relationship here too, and it’s probably mostly driven by public transport service levels being roughly proportional to distance from the CBD, but also the proportion of the population who work in the CBD being much higher for homes nearer the CBD.

Sydney had the lowest average private transport mode share at all distances up to 20 km from the CBD, followed by Melbourne and Brisbane, in line with overall mode shares.

The trends over time are also interesting. Brisbane saw mode shifts towards private transport at all distances more than 2 km from the city centre between 2011 and 2016. However there were not significant shifts for Perth outside the city centre – that is: modes shares by geography didn’t change very much. The mode shift away from public transport in Perth is best explained by the shift in jobs balance away from the city centre.

Here are public transport mode shares by home distance from city centres:

In most cities, public transport mode share peaked at a few kilometres from the city (as active transport has a higher mode in the central city).

Here are public transport mode shifts by distance from the city centre between 2011 and 2016:

The significant shift in central Melbourne is likely to be largely explained by the Free Tram Zone introduced in 2015. Outside of the city centre the mode shifts are surprisingly uniform across each city.

Here’s the same chart for 2006-2011, and you can clearly see the impact of the opening of the Mandurah railway line in Perth with significant mode shift beyond 30 km:

Curiously there was a massive shift to public transport for CBD residents in Melbourne (and this is before the free tram zone was introduced).

So which factors best explain the patterns in mode shares across cities?

What we’ve clearly seen is that higher public transport mode shares are seen for journeys to work…

  • to higher density workplaces
  • from areas of lower motor vehicle ownership
  • to workplaces closer to train stations
  • from higher density residential areas
  • from areas around train and busway stations
  • to and from areas closer to city centres (except from the central city where walking takes over)
  • from less wealthy areas (while I haven’t tested this directly, wealth seems to explain a lot of the outliers in the scatter plots)

I’ve listed these roughly in order of the strength of the relationships seen in the data, but I haven’t put them all in a regression model (yet, sorry).

Of course most of these factors are inter-related, so we cannot isolate causation factors. I’m going to run through many of them, because they are often interesting: (note I have sometimes used log scales)

Population density is roughly related to distance from the city centre:

Motor vehicle ownership has a strong relationship with population density (see this post for more analysis):

Motor vehicle ownership has a weaker relationships with distance from the city centre:

Motor vehicle ownership is related to home distance from train stations, except in Adelaide:

Technical note: For this chart (and some below) I’ve calculated average quantities for the variable on the Y axis, as there would otherwise there are too many data points on the chart and it becomes very hard to see the relationship (I would need to show all SA1s because SA2s are too large in terms of distance from stations). The downside is that these style of charts don’t indicate the strength of relationships.

Population weighted density is related to distance from train stations, especially in Melbourne and Sydney, but not at all in Adelaide:

There is a relationship – although not strong – between weighted job density and distance from city centres:

There’s some relationship between average weighted jobs density and distance from train stations, except in Adelaide:

Here’s the same data, but as a scatter plot with a point for each destination zone, scaled by the number of journeys to each destination zone, and a linear Y-axis:

Technical note: the X-axis appears green mostly because Adelaide data points are drawn on top of other cities, but those data points aren’t of much interest.

In most cities, destination zones with high jobs density (over 700 jobs/ha) were only found within 1 km of a train station – with the notable major exception of Adelaide (again!).

(If you are curious, the large Melbourne zone at 1.4 km from a train station and 659 jobs/ha is the Parkville hospital precinct – where incidentally a train station is currently under construction).

There is a relationship between motor vehicle ownership and proximity to busway stations, but it varies between cities:

But there’s not much relationship between population density and proximity to busway stations (except in the immediate vicinity of busway stations in Brisbane):

Final remarks: there’s something about Adelaide’s train network

A few key observations come through clearly about the catchments around Adelaide’s train stations:

  • In aggregate they do not have higher population density, unlike other cities.
  • In aggregate they do not have particularly high public transport mode shares, unlike other cities.
  • In aggregate they do not have lower rates of motor vehicle ownership, unlike other cities.
  • They do not include the area of highest job density in the CBD (a longer walk or transfer to tram or bus is required), unlike other cities.

Few cities have spare land corridors available for new at-grade rapid public transport lines, and so transport planners generally want to make maximum use of the ones they’ve got, before opting for expensive and/or disruptive tunnelling or viaducts solutions. It looks like Adelaide’s rail corridors are not reaching their people-moving potential.

By contrast, Adelaide’s “O-Bahn” busway does go into the job dense heart of the CBD and the busway station catchments do have higher public transport mode share and lower motor vehicle ownership. However they do not have higher population density, possibly because the stations are surrounded by car parks, green space, and one large shopping centre (Tea Tree Plaza).

Mode shares, population densities, and motor vehicle ownership rates would quite probably change significantly if Adelaide could address the fourth issue by building a train station near the centre of the CBD.

In fact, Auckland had a very similar problem with its previous main city station being located away from the centre of the CBD. They fixed that with Britomart station opening in 2003 and train patronage soon rose quite dramatically (off a very low base, and also helped by service upgrades, subsequent electrification, and many other investments).

Should Adelaide do the same? It would certainly not be cheap and you would have to weigh up the costs and benefits.

Advertisements

Are Australian cities becoming denser?

Tue 5 November, 2013

[Updated April 2017 with 2015-16 population estimates. First published November 2013]

While Australian cities have been growing outwards with new suburbia, they have also been getting denser in established areas, and the new areas on the fringe are often more dense than growth areas used to be (see last post). So what’s the net effect – are Australian cities getting more or less dense?

This post also explores measures of population-weighted density for Australian cities large and small over time. It also tries to resolve some of the issues in the calculation methodology by using square kilometre geometry, looks at longer term trends for Australian cities, and then compares multiple density measures for Melbourne over time.

Measuring density

Under the traditional measure of density, you’d simply divide the population of a city by the metropolitan area’s area (in hectares). As the boundary of the metropolitan areas seldom change, the average density would simply increase in line with population with this measure. But that density value would also be way below the density at which the average resident lives because of the inclusion of vast swaths of unpopulated land within “metropolitan areas”, and so be not very meaningful.

Enter population-weighted density (which I’ve looked at previously here and here). Population-weighted density takes a weighted average of the density of all parcels of land that make up a city, with each parcel weighted by its population. One way to think about it is the residential density in which the “average resident” lives.

So the large low-density parcels of rural land outside the urbanised area but inside the “metropolitan area” count very little in the weighted average because of their small population relative to the urbanised areas. This means population-weighted density goes a long way to overcoming having to worry about the boundaries of the “urban area” of a city. Indeed, in a previous post I found that removing low density parcels of land had very little impact on calculations of population-weighted density for Australian cities. However, the size of the parcels of land used in a population-weighted density calculation will have an impact, as we will see shortly.

Calculations of population-weighted density can answer the question about whether the “average density” of a city has been increasing or decreasing. But as we will see below, using geographic regions put together by statisticians based on historical boundaries is not always a fair way to compare different cities.

Population-weighted density of Australian cities over time

Firstly, here is a look at population-weighted density of the five largest Australian cities (as defined by ABS Significant Urban Areas), measured at SA2 level (the smallest geography for which there exists a good consistent set of time-series estimates). SA2s roughly equate to suburbs.

According to this data, most cities bottomed out in density in the mid 1990s. Sydney, Melbourne and Brisbane have shown the fastest rates of densification in the last three years.

What about smaller Australian cities? (120,000+ residents in 2014):

Darwin comes out as the third most dense city in Australia on this measure, with Brisbane rising quickly in recent years into fourth place. Most cities have shown densification in recent times, with the main exception being Townsville. On an SA2 level, population weighted density in Perth hardly rose at all in 2015-16 (a year when 92% of population growth was in the outer suburbs)

However, we need to sanity test these values. Old-school suburban areas of Australian cities typically have a density of around 15 persons per hectare, so the values for Geelong, Newcastle, Darwin, Townsville, and Hobart all seem a bit too low for anyone who has visited them. I’d suggest the results may well be an artefact of the arbitrary geographic boundaries used – and this effect would be greater for smaller cities because they would have more SA2s on the interface between urban and rural areas (indeed all of those cities are less than 210,000 in population).

For reference, here are the June 2014 populations of all the above cities:

Australian cities population 2014

The following map shows Hobart, with meshblock boundaries in black (very small blocks indicate urban areas), SA2s in pink, and the Significant Urban Area (SUA) boundary in green.  You can see that many of the SA2s within the Hobart SUA have pockets of dense urban settlement, together with large areas that are non-urban – ie SA2s on the urban/rural interface. The density of these pockets will be washed out because of the size of the SA2s.

Hobart SUA image

 

 

Reducing the impact of arbitrary geographic boundaries

As we saw above, the population-weighted density results for smaller cities were very low, and probably not reflective of the actual typical densities, which might be caused by arbitrary geographic boundaries.

Thankfully ABS have followed Europe and released of a square kilometre grid density for Australia which ensures that geographic zones are all the same size. While it is still somewhat arbitrary where exactly this grid falls on any given city, it is arguably less arbitrary than geographic zones that follow traditional notions of area boundaries.

Using that data, I’ve been able to calculate population weighted density for the larger cities of Australia. The following chart shows those values compared to values calculated on SA2 geography:

pop weighted density 2011 grid and SA2 australian cities

You’ll see that the five smaller cities (Newcastle, Hobart, Geelong, Townsville and Cairns) that had very low results at SA2 level get more realistic values on the kilometre grid.

You’ll notice that most cities (except big Melbourne and Sydney) are in the 15 to 18 persons per hectare range, which is around typical Australian suburban density.

While the Hobart figure is higher using the grid geography, it’s still quite low (indeed the lowest of all the cities). You’ll notice on the map above that urban Hobart hugs the quite wide and windy Derwent River, and as such a larger portion of Hobart’s grid squares are likely to contain both urban and water portions – with the water portions washing out the density (pardon the pun!). While most other cities also have some coastline, much more of Hobart’s urban settlement is near to a coastline.

But stepping back, every city has urban/rural and/or urban/water boundaries and the boundary has to be drawn somewhere. So smaller cities are always going to have a higher proportion of their land parcels being on the interface – and this is even more the case if you are using larger parcel sizes. There is also the issue of what “satellite” urban settlements to include within a city which ultimately becomes arbitrary at some point. Perhaps there is some way of adjusting for this interface effect depending on the size of the city, but I’m not going to attempt to resolve it in this post.

International comparisons of population-weighted density

See another post for some international comparisons using square km grids.

Changes in density of larger Australian cities since 1981

We can also calculate population-weighted density back to 1981 using the larger SA3 geography. An SA3 is roughly similar to a local government area (in Melbourne at least), so getting quite large and including more non-urban land. Also, as Significant Urban Areas are defined only at the SA2 level, I need to resort to Greater Capital City Statistical Areas for the next chart:

This shows that most cities were getting less dense in the 1980s (Melbourne quite dramatically), with the notable exception of Perth. I expect these trends could be related to changes in housing/planning policy over time. This calculation has Adelaide ahead of the other smaller cities – which is different ordering to the SA2 calculations above.

On the SA3 level, Perth declined in population-weighted density in 2015-16.

When measured at SA2 level, the four smaller cities had almost the same density in 2011, but at SA3 level, there is more separating them. My guess is that the arbitrary nature of geographic boundaries is having an impact here. Also, the share of SA3s in a city that are on the urban/rural interface is likely to be higher, which again will have more impact for smaller cities. Indeed the trend for the ACT at SA3 level is very different to Canberra at SA2 level.

Melbourne’s population-weighted density over time

I’ve taken a more detailed look at my home city Melbourne, using all available ABS population figures for the geographic units ranging from mesh blocks to SA3s inside “Greater Melbourne” (as defined in 2011) or inside the Melbourne Significant Urban Area (SUA, where marked), to produce the following chart:

Note: I’ve calculated population-weighted density at the SA2 level for both the Greater Capital City Statistical Area (ie “Greater Melbourne”, which includes Bacchus Marsh, Gisborne and Wallan) and the Melbourne Significant Urban Area (slightly smaller), which yield slightly different values.

All of the time series data suggests 1994 was the turning point in Melbourne where the population-weighted density started increasing (not that 1994 was a particularly momentous year – the population-weighted density increased by a whopping 0.0559 persons per hectare in the year to June 1995 (measured at SA2 level for Greater Melbourne)).

You’ll also note that the density values are very different when measured on different geographic units. That’s because larger units include more of a mix of residential and non-residential land. The highest density values are calculated using mesh blocks (MB), which often separate out even small pockets of non-residential land (eg local parks). Indeed 25% of mesh blocks in Australia had zero population, while only 2% of SA1s had zero population (at the 2011 census). At the other end of the scale, SA3s are roughly the size of local councils and include parklands, employment land, rural land, airports, freeways, etc which dilutes their average density.

In the case of SA2 and SA3 units, the same geographic areas have been used in the data for all years. On the other hand, Census Collector Districts (CD) often changed between each five-yearly census, but I am assuming the guidelines for their creation would not have changed significantly.

Now why is a transport blog so interested in density again? There is a suggested relationship between (potential) public transport efficiency and urban density – ie there will be more potential customers per route kilometre in a denser area. In reality longer distance public transport services are going to be mostly serving the larger urban blob that is a city – and these vehicles need to pass large parklands, industrial areas, water bodies, etc to connect urban origins and destinations. The relevant density measure to consider for such services might best be based on larger geographic areas – eg SA3. Buses are more likely to be serving only urbanised areas, and so are perhaps more dependent on residential density – best calculated on a smaller geographic scale, probably km grid (somewhere between SA1 and SA2).

You may also like


Comparing the residential densities of Australian cities (2011)

Fri 19 October, 2012

I’ve looked at Melbourne residential density in detail, so what about other Australian cities?  Is population weighted density a useful measure? Does population weighted density help explain differences in public transport mode shares?

For this exercise, I’ve looked at 2011 census data at the Statistical Area Level 1 (SA1) geography (currently the smallest geography for which population data is available) for Greater Capital City Statistical Areas (which include large tracts of rural hinterland). I’ve sometimes applied an arbitrary threshold of 3 persons per hectare to define urban residential areas.

Measures of overall density

Population weighted density is a weighted average of the density of all the parcels of land in the city, with the population of each parcel of land providing the weighting. This provides a figure indicative of the residential density of the “average person”, although that’s still a little abstract. A city where a large proportion of people live in dense areas will have a much higher weighted population density than average population density.

Average density is simply the total population divided by the area of the city (or if you like, the average density weighted by the areas of each parcel of land). In calculating average residential density (which I’m doing in this post), the area would only include residential areas (I’ve arbitrarily used a threshold of SA1s with at least 3 persons per hectare).

Another measure is urban density, which considers all the land that makes up the urban city, including non-residential areas, but excluding the rural land that makes up large parts of most metropolitan areas when defined by administrative boundaries. I have not attempted to measure ‘urban’ density in this post.

Firstly here’s a table of data for the six largest Australian cities with three different measures of 2011 residential density:

Greater Capital City Statistical Area Pop Pop (>3/ha) Area, square km (>3/ha) Pop-weighted density, persons/ ha (all SA1s) Pop-weighted density, persons/ ha (SA1s >3/ha) Average residential density, persons/ ha (SA1s >3/ha)
Greater Sydney 4391578 4225278 1530 50.2 52.1 27.6
Greater Melbourne 3999924 3832366 1812 31.8 33.1 21.1
Greater Brisbane 2066134 1866794 1127 22.6 24.8 16.6
Greater Perth 1728567 1639849 963 21.6 22.7 17.0
Greater Adelaide 1225136 1161668 644 21.2 22.3 18.0
Australian Capital Territory 356563 350917 221 20.5 20.8 15.9

You’ll notice that Melbourne has a lower population than Sydney, but the total land area above 3 persons/ha is much larger.

Here are those densities in chart form:

You can see Sydney has around double the population weighted density of most other cities, but its average density is only about 60% higher. These figures show Sydney has a very different density pattern compared other Australian cities.

You can also see very little difference in weighted density whether you exclude low density land parcels or not (the blue and red bars). The density is brought down only slightly by the relatively small number of people living in very low density areas (below 3 persons/ha) within the statistical geography. Thus weighted average density is a good way to get around arguments about the boundary of the “urban” area. But then we are only measuring residential density here – and the large unoccupied spaces between residents of a city are very important when it comes to transport issues.

Can you compare population weighted density of Australian cities with international cities? Yes, but only if the parcels of land used are of a similar size and created in a similar fashion. The more fine-grained the geography (ie smaller the parcels of land), the more non-residential pockets of land will be excluded from the calculation. Anyone doing an international comparison should compare how the ABS create their geography at SA1 level with approaches of other statistical agencies. And please comment below if you get a set of comparable figures.

Density by distance from the CBD

The differences in density can be seen a little more clearly when you look at weighted average density by distance from the city centre:

(note: I’ve chopped the vertical scale at 100 persons/ha so parts of central Sydney, Melbourne and Brisbane are off the scale).

For Perth, Adelaide, Brisbane and Canberra (ACT) you can see a weighted average density in the mid to low 20s for large areas of the city, indicating large tracts of what you might describe as traditional Australian suburbia. In Canberra this kicks in at just 2 km from the CBD, and in Adelaide it kicks in 3 km from the city.

In Melbourne the weighted average density doesn’t get below 30 until 9 kms from the CBD indicating a larger denser inner area, and in Sydney it doesn’t drop below 30 until you are 39 km from the CBD!

Distribution of population at different densities

Here’s a frequency distribution of densities in the cities:

I’m using an interval of 1 person/ha, and the figures are rounded down to form the values on the X axis (ie: the value you see at 20 persons/ha is the proportion of the population living between 20 and 21 persons/ha).

You can see Sydney has the flattest distribution of all – indicating it has the widest range of densities of any city. Melbourne is not far behind, whereas Canberra has a lot of people living in areas between 12 and 24 persons/ha.

Note that many cities have a significant proportion of the population living at rural densities (0 to 1 person per hectare), particularly Greater Brisbane.

Another way to look at this data is a cumulative frequency distribution:

You can read off the median densities for the cities: Sydney 33, Melbourne 28, Brisbane 22, Perth 22, Adelaide 22, Canberra 19.

You can also see that 30% of people in Sydney live in densities of 44 persons/ha or more – compared to only 12% of Melburnians, 5% of Brisbanites, and less than 2% of people in the other cities.

If 15-30 persons per hectare is what you define as suburbia, then that’s 26% of Sydney, 37% of Melbourne, 44% of Brisbane, 55% of Perth, 57% of Canberra and 62% of Adelaide.

Spatial distribution of density

For the purest view of density you cannot get past a map. The following maps show a simple density calculation at the SA1 geography.

Update 22 Oct 2012: maps now include railway lines using OpenStreetMap data provided by Maps Without Borders. The data is licensed under Creative Commons Attribution-ShareAlike 2.0, copyright OpenStreetMap and contributors.

Sydney

You can see vast areas of darker green (40+/ha), particularly between Sydney Harbour and Botany Bay. There are also quite a few green areas in the western suburbs, while the northern north shore has the lowest density. There are many concentrations of density around the passenger rail lines.

Melbourne (and Geelong)

You can see areas of dark green around the inner city, with large tracts of yellow and green in the suburbs (25-35 persons/ha). There are however areas of moderate green (30-40) in some of the newer outer growth areas to the west and north, reflecting recent planning. There’s a not a strong relationship to train lines, but this might reflect higher densities equally attracted to tram lines (not shown on the map).

Note this map is slightly different to that in a recent post where I masked out non-residential mesh blocks.

Brisbane

You can see dark green patches around the river/CBD, but then mostly medium to low densities in the suburbs. There’s very little evidence of higher densities in fringe growth areas. There are some denser areas around railway lines (note the map does not show Brisbane’s busway network).

Perth

You can see green patches around the city, but also in some fringe growth areas where new planning controls are presumably forcing up densities. There are however vast tracts of orange (15-25 persons/ha), and little evidence of higher density around the rail lines (note: a lot of the lines are freight only and the north-south passenger line has very broad station spacing and limited walking catchment as most of it is within a freeway median).

Adelaide

Adelaide some inner city blocks of high density, but once you get outside the green belt surrounding the city blocks, you fairly quickly head into suburban densities. There are only a few pockets of high density in the middle and outer suburbs, and very little relationship evident between density and the rail lines.

Canberra (and Queanbeyan)

Canberra has vast areas at low density, and only a few pockets with dark green. There are however green patches on the fringes (particularly in the far north and far south), perhaps again reflecting planning policies forcing up densities.

Sydney is really quite a different city compared to the rest of Australia, with a much larger share of the population living in high density residential areas (more than I had expected). Melbourne has a much lower population weighted density (still quite a few people living in high density areas, but much less so than Sydney), followed by four cities that aren’t that different when it comes to density: Brisbane, Perth, Adelaide and Canberra.

What about density and public transport use?

Here’s a comparison of density (measured as both average and population weighted) and the most recent estimate of public transport mode share of motorised passenger kms for Australian cities:

Population weighted density certainly shows a stronger relationship with public transport use than average density (r-squared of 0.89 versus 0.82 on a linear regression).

If you believe that higher population density will lead to higher public transport use (for a given level of public transport service), then you would expect Sydney to be well placed to have a higher public transport mode share. Which indeed it does, but does it have the same level of public transport supply as other cities, and are all other factors equal? That’s a very difficult question to answer.

You could measure public transport service kilometres per capita, but different modes have different speeds, stopping frequencies and capacities, public transport supply will vary greatly across the city, and some cities might have more effective service network designs that others.

If all cities had the same levels of public transport supply and all other things were equal, you might expect a straight line relationship (or perhaps an exponential relationship). But Brisbane and Melbourne (and to a small extent Perth) seem to be bucking what otherwise might be a linear pattern. Are these cities doing much better with quality and quantity of public transport supply? Or is it something else about those cities?

Car ownership rates do vary between Australian cities, but this might be more a product of public transport viability for particular residents:

Also, we know that car ownership doesn’t have a strong relationship with car use.

When working population census data comes out I would like to look at the distribution of employment within cities. We know that public transport use is highest for journeys to work in the CBD (as it usually competes strongly against the car), so the proportion of a city’s jobs that are in the CBD is likely to impact the public transport mode share (at least for journeys to work). Moreover, a higher average employment density in general might be easier to serve with competitive public transport, and thus lead to a higher public transport mode share. It will hopefully also be possible to calculate weighted density of employment (at least at the SA2 level).

Finally, I’d like thank Alan Davies (The Urbanist) for inspiring this post.

Other posts about density: