Are Australian cities becoming denser?

Tue 5 November, 2013

[Updated April 2017 with 2015-16 population estimates. First published November 2013]

While Australian cities have been growing outwards with new suburbia, they have also been getting denser in established areas, and the new areas on the fringe are often more dense than growth areas used to be (see last post). So what’s the net effect – are Australian cities getting more or less dense?

This post also explores measures of population-weighted density for Australian cities large and small over time. It also tries to resolve some of the issues in the calculation methodology by using square kilometre geometry, looks at longer term trends for Australian cities, and then compares multiple density measures for Melbourne over time.

Measuring density

Under the traditional measure of density, you’d simply divide the population of a city by the metropolitan area’s area (in hectares). As the boundary of the metropolitan areas seldom change, the average density would simply increase in line with population with this measure. But that density value would also be way below the density at which the average resident lives because of the inclusion of vast swaths of unpopulated land within “metropolitan areas”, and so be not very meaningful.

Enter population-weighted density (which I’ve looked at previously here and here). Population-weighted density takes a weighted average of the density of all parcels of land that make up a city, with each parcel weighted by its population. One way to think about it is the residential density in which the “average resident” lives.

So the large low-density parcels of rural land outside the urbanised area but inside the “metropolitan area” count very little in the weighted average because of their small population relative to the urbanised areas. This means population-weighted density goes a long way to overcoming having to worry about the boundaries of the “urban area” of a city. Indeed, in a previous post I found that removing low density parcels of land had very little impact on calculations of population-weighted density for Australian cities. However, the size of the parcels of land used in a population-weighted density calculation will have an impact, as we will see shortly.

Calculations of population-weighted density can answer the question about whether the “average density” of a city has been increasing or decreasing. But as we will see below, using geographic regions put together by statisticians based on historical boundaries is not always a fair way to compare different cities.

Population-weighted density of Australian cities over time

Firstly, here is a look at population-weighted density of the five largest Australian cities (as defined by ABS Significant Urban Areas), measured at SA2 level (the smallest geography for which there exists a good consistent set of time-series estimates). SA2s roughly equate to suburbs.

According to this data, most cities bottomed out in density in the mid 1990s. Sydney, Melbourne and Brisbane have shown the fastest rates of densification in the last three years.

What about smaller Australian cities? (120,000+ residents in 2014):

Darwin comes out as the third most dense city in Australia on this measure, with Brisbane rising quickly in recent years into fourth place. Most cities have shown densification in recent times, with the main exception being Townsville. On an SA2 level, population weighted density in Perth hardly rose at all in 2015-16 (a year when 92% of population growth was in the outer suburbs)

However, we need to sanity test these values. Old-school suburban areas of Australian cities typically have a density of around 15 persons per hectare, so the values for Geelong, Newcastle, Darwin, Townsville, and Hobart all seem a bit too low for anyone who has visited them. I’d suggest the results may well be an artefact of the arbitrary geographic boundaries used – and this effect would be greater for smaller cities because they would have more SA2s on the interface between urban and rural areas (indeed all of those cities are less than 210,000 in population).

For reference, here are the June 2014 populations of all the above cities:

Australian cities population 2014

The following map shows Hobart, with meshblock boundaries in black (very small blocks indicate urban areas), SA2s in pink, and the Significant Urban Area (SUA) boundary in green.  You can see that many of the SA2s within the Hobart SUA have pockets of dense urban settlement, together with large areas that are non-urban – ie SA2s on the urban/rural interface. The density of these pockets will be washed out because of the size of the SA2s.

Hobart SUA image



Reducing the impact of arbitrary geographic boundaries

As we saw above, the population-weighted density results for smaller cities were very low, and probably not reflective of the actual typical densities, which might be caused by arbitrary geographic boundaries.

Thankfully ABS have followed Europe and released of a square kilometre grid density for Australia which ensures that geographic zones are all the same size. While it is still somewhat arbitrary where exactly this grid falls on any given city, it is arguably less arbitrary than geographic zones that follow traditional notions of area boundaries.

Using that data, I’ve been able to calculate population weighted density for the larger cities of Australia. The following chart shows those values compared to values calculated on SA2 geography:

pop weighted density 2011 grid and SA2 australian cities

You’ll see that the five smaller cities (Newcastle, Hobart, Geelong, Townsville and Cairns) that had very low results at SA2 level get more realistic values on the kilometre grid.

You’ll notice that most cities (except big Melbourne and Sydney) are in the 15 to 18 persons per hectare range, which is around typical Australian suburban density.

While the Hobart figure is higher using the grid geography, it’s still quite low (indeed the lowest of all the cities). You’ll notice on the map above that urban Hobart hugs the quite wide and windy Derwent River, and as such a larger portion of Hobart’s grid squares are likely to contain both urban and water portions – with the water portions washing out the density (pardon the pun!). While most other cities also have some coastline, much more of Hobart’s urban settlement is near to a coastline.

But stepping back, every city has urban/rural and/or urban/water boundaries and the boundary has to be drawn somewhere. So smaller cities are always going to have a higher proportion of their land parcels being on the interface – and this is even more the case if you are using larger parcel sizes. There is also the issue of what “satellite” urban settlements to include within a city which ultimately becomes arbitrary at some point. Perhaps there is some way of adjusting for this interface effect depending on the size of the city, but I’m not going to attempt to resolve it in this post.

International comparisons of population-weighted density

See another post for some international comparisons using square km grids.

Changes in density of larger Australian cities since 1981

We can also calculate population-weighted density back to 1981 using the larger SA3 geography. An SA3 is roughly similar to a local government area (in Melbourne at least), so getting quite large and including more non-urban land. Also, as Significant Urban Areas are defined only at the SA2 level, I need to resort to Greater Capital City Statistical Areas for the next chart:

This shows that most cities were getting less dense in the 1980s (Melbourne quite dramatically), with the notable exception of Perth. I expect these trends could be related to changes in housing/planning policy over time. This calculation has Adelaide ahead of the other smaller cities – which is different ordering to the SA2 calculations above.

On the SA3 level, Perth declined in population-weighted density in 2015-16.

When measured at SA2 level, the four smaller cities had almost the same density in 2011, but at SA3 level, there is more separating them. My guess is that the arbitrary nature of geographic boundaries is having an impact here. Also, the share of SA3s in a city that are on the urban/rural interface is likely to be higher, which again will have more impact for smaller cities. Indeed the trend for the ACT at SA3 level is very different to Canberra at SA2 level.

Melbourne’s population-weighted density over time

I’ve taken a more detailed look at my home city Melbourne, using all available ABS population figures for the geographic units ranging from mesh blocks to SA3s inside “Greater Melbourne” (as defined in 2011) or inside the Melbourne Significant Urban Area (SUA, where marked), to produce the following chart:

Note: I’ve calculated population-weighted density at the SA2 level for both the Greater Capital City Statistical Area (ie “Greater Melbourne”, which includes Bacchus Marsh, Gisborne and Wallan) and the Melbourne Significant Urban Area (slightly smaller), which yield slightly different values.

All of the time series data suggests 1994 was the turning point in Melbourne where the population-weighted density started increasing (not that 1994 was a particularly momentous year – the population-weighted density increased by a whopping 0.0559 persons per hectare in the year to June 1995 (measured at SA2 level for Greater Melbourne)).

You’ll also note that the density values are very different when measured on different geographic units. That’s because larger units include more of a mix of residential and non-residential land. The highest density values are calculated using mesh blocks (MB), which often separate out even small pockets of non-residential land (eg local parks). Indeed 25% of mesh blocks in Australia had zero population, while only 2% of SA1s had zero population (at the 2011 census). At the other end of the scale, SA3s are roughly the size of local councils and include parklands, employment land, rural land, airports, freeways, etc which dilutes their average density.

In the case of SA2 and SA3 units, the same geographic areas have been used in the data for all years. On the other hand, Census Collector Districts (CD) often changed between each five-yearly census, but I am assuming the guidelines for their creation would not have changed significantly.

Now why is a transport blog so interested in density again? There is a suggested relationship between (potential) public transport efficiency and urban density – ie there will be more potential customers per route kilometre in a denser area. In reality longer distance public transport services are going to be mostly serving the larger urban blob that is a city – and these vehicles need to pass large parklands, industrial areas, water bodies, etc to connect urban origins and destinations. The relevant density measure to consider for such services might best be based on larger geographic areas – eg SA3. Buses are more likely to be serving only urbanised areas, and so are perhaps more dependent on residential density – best calculated on a smaller geographic scale, probably km grid (somewhere between SA1 and SA2).

You may also like

Comparing the residential densities of Australian cities (2011)

Fri 19 October, 2012

I’ve looked at Melbourne residential density in detail, so what about other Australian cities?  Is population weighted density a useful measure? Does population weighted density help explain differences in public transport mode shares?

For this exercise, I’ve looked at 2011 census data at the Statistical Area Level 1 (SA1) geography (currently the smallest geography for which population data is available) for Greater Capital City Statistical Areas (which include large tracts of rural hinterland). I’ve sometimes applied an arbitrary threshold of 3 persons per hectare to define urban residential areas.

Measures of overall density

Population weighted density is a weighted average of the density of all the parcels of land in the city, with the population of each parcel of land providing the weighting. This provides a figure indicative of the residential density of the “average person”, although that’s still a little abstract. A city where a large proportion of people live in dense areas will have a much higher weighted population density than average population density.

Average density is simply the total population divided by the area of the city (or if you like, the average density weighted by the areas of each parcel of land). In calculating average residential density (which I’m doing in this post), the area would only include residential areas (I’ve arbitrarily used a threshold of SA1s with at least 3 persons per hectare).

Another measure is urban density, which considers all the land that makes up the urban city, including non-residential areas, but excluding the rural land that makes up large parts of most metropolitan areas when defined by administrative boundaries. I have not attempted to measure ‘urban’ density in this post.

Firstly here’s a table of data for the six largest Australian cities with three different measures of 2011 residential density:

Greater Capital City Statistical Area Pop Pop (>3/ha) Area, square km (>3/ha) Pop-weighted density, persons/ ha (all SA1s) Pop-weighted density, persons/ ha (SA1s >3/ha) Average residential density, persons/ ha (SA1s >3/ha)
Greater Sydney 4391578 4225278 1530 50.2 52.1 27.6
Greater Melbourne 3999924 3832366 1812 31.8 33.1 21.1
Greater Brisbane 2066134 1866794 1127 22.6 24.8 16.6
Greater Perth 1728567 1639849 963 21.6 22.7 17.0
Greater Adelaide 1225136 1161668 644 21.2 22.3 18.0
Australian Capital Territory 356563 350917 221 20.5 20.8 15.9

You’ll notice that Melbourne has a lower population than Sydney, but the total land area above 3 persons/ha is much larger.

Here are those densities in chart form:

You can see Sydney has around double the population weighted density of most other cities, but its average density is only about 60% higher. These figures show Sydney has a very different density pattern compared other Australian cities.

You can also see very little difference in weighted density whether you exclude low density land parcels or not (the blue and red bars). The density is brought down only slightly by the relatively small number of people living in very low density areas (below 3 persons/ha) within the statistical geography. Thus weighted average density is a good way to get around arguments about the boundary of the “urban” area. But then we are only measuring residential density here – and the large unoccupied spaces between residents of a city are very important when it comes to transport issues.

Can you compare population weighted density of Australian cities with international cities? Yes, but only if the parcels of land used are of a similar size and created in a similar fashion. The more fine-grained the geography (ie smaller the parcels of land), the more non-residential pockets of land will be excluded from the calculation. Anyone doing an international comparison should compare how the ABS create their geography at SA1 level with approaches of other statistical agencies. And please comment below if you get a set of comparable figures.

Density by distance from the CBD

The differences in density can be seen a little more clearly when you look at weighted average density by distance from the city centre:

(note: I’ve chopped the vertical scale at 100 persons/ha so parts of central Sydney, Melbourne and Brisbane are off the scale).

For Perth, Adelaide, Brisbane and Canberra (ACT) you can see a weighted average density in the mid to low 20s for large areas of the city, indicating large tracts of what you might describe as traditional Australian suburbia. In Canberra this kicks in at just 2 km from the CBD, and in Adelaide it kicks in 3 km from the city.

In Melbourne the weighted average density doesn’t get below 30 until 9 kms from the CBD indicating a larger denser inner area, and in Sydney it doesn’t drop below 30 until you are 39 km from the CBD!

Distribution of population at different densities

Here’s a frequency distribution of densities in the cities:

I’m using an interval of 1 person/ha, and the figures are rounded down to form the values on the X axis (ie: the value you see at 20 persons/ha is the proportion of the population living between 20 and 21 persons/ha).

You can see Sydney has the flattest distribution of all – indicating it has the widest range of densities of any city. Melbourne is not far behind, whereas Canberra has a lot of people living in areas between 12 and 24 persons/ha.

Note that many cities have a significant proportion of the population living at rural densities (0 to 1 person per hectare), particularly Greater Brisbane.

Another way to look at this data is a cumulative frequency distribution:

You can read off the median densities for the cities: Sydney 33, Melbourne 28, Brisbane 22, Perth 22, Adelaide 22, Canberra 19.

You can also see that 30% of people in Sydney live in densities of 44 persons/ha or more – compared to only 12% of Melburnians, 5% of Brisbanites, and less than 2% of people in the other cities.

If 15-30 persons per hectare is what you define as suburbia, then that’s 26% of Sydney, 37% of Melbourne, 44% of Brisbane, 55% of Perth, 57% of Canberra and 62% of Adelaide.

Spatial distribution of density

For the purest view of density you cannot get past a map. The following maps show a simple density calculation at the SA1 geography.

Update 22 Oct 2012: maps now include railway lines using OpenStreetMap data provided by Maps Without Borders. The data is licensed under Creative Commons Attribution-ShareAlike 2.0, copyright OpenStreetMap and contributors.


You can see vast areas of darker green (40+/ha), particularly between Sydney Harbour and Botany Bay. There are also quite a few green areas in the western suburbs, while the northern north shore has the lowest density. There are many concentrations of density around the passenger rail lines.

Melbourne (and Geelong)

You can see areas of dark green around the inner city, with large tracts of yellow and green in the suburbs (25-35 persons/ha). There are however areas of moderate green (30-40) in some of the newer outer growth areas to the west and north, reflecting recent planning. There’s a not a strong relationship to train lines, but this might reflect higher densities equally attracted to tram lines (not shown on the map).

Note this map is slightly different to that in a recent post where I masked out non-residential mesh blocks.


You can see dark green patches around the river/CBD, but then mostly medium to low densities in the suburbs. There’s very little evidence of higher densities in fringe growth areas. There are some denser areas around railway lines (note the map does not show Brisbane’s busway network).


You can see green patches around the city, but also in some fringe growth areas where new planning controls are presumably forcing up densities. There are however vast tracts of orange (15-25 persons/ha), and little evidence of higher density around the rail lines (note: a lot of the lines are freight only and the north-south passenger line has very broad station spacing and limited walking catchment as most of it is within a freeway median).


Adelaide some inner city blocks of high density, but once you get outside the green belt surrounding the city blocks, you fairly quickly head into suburban densities. There are only a few pockets of high density in the middle and outer suburbs, and very little relationship evident between density and the rail lines.

Canberra (and Queanbeyan)

Canberra has vast areas at low density, and only a few pockets with dark green. There are however green patches on the fringes (particularly in the far north and far south), perhaps again reflecting planning policies forcing up densities.

Sydney is really quite a different city compared to the rest of Australia, with a much larger share of the population living in high density residential areas (more than I had expected). Melbourne has a much lower population weighted density (still quite a few people living in high density areas, but much less so than Sydney), followed by four cities that aren’t that different when it comes to density: Brisbane, Perth, Adelaide and Canberra.

What about density and public transport use?

Here’s a comparison of density (measured as both average and population weighted) and the most recent estimate of public transport mode share of motorised passenger kms for Australian cities:

Population weighted density certainly shows a stronger relationship with public transport use than average density (r-squared of 0.89 versus 0.82 on a linear regression).

If you believe that higher population density will lead to higher public transport use (for a given level of public transport service), then you would expect Sydney to be well placed to have a higher public transport mode share. Which indeed it does, but does it have the same level of public transport supply as other cities, and are all other factors equal? That’s a very difficult question to answer.

You could measure public transport service kilometres per capita, but different modes have different speeds, stopping frequencies and capacities, public transport supply will vary greatly across the city, and some cities might have more effective service network designs that others.

If all cities had the same levels of public transport supply and all other things were equal, you might expect a straight line relationship (or perhaps an exponential relationship). But Brisbane and Melbourne (and to a small extent Perth) seem to be bucking what otherwise might be a linear pattern. Are these cities doing much better with quality and quantity of public transport supply? Or is it something else about those cities?

Car ownership rates do vary between Australian cities, but this might be more a product of public transport viability for particular residents:

Also, we know that car ownership doesn’t have a strong relationship with car use.

When working population census data comes out I would like to look at the distribution of employment within cities. We know that public transport use is highest for journeys to work in the CBD (as it usually competes strongly against the car), so the proportion of a city’s jobs that are in the CBD is likely to impact the public transport mode share (at least for journeys to work). Moreover, a higher average employment density in general might be easier to serve with competitive public transport, and thus lead to a higher public transport mode share. It will hopefully also be possible to calculate weighted density of employment (at least at the SA2 level).

Finally, I’d like thank Alan Davies (The Urbanist) for inspiring this post.

Other posts about density: