How is density changing in Australian cities? (2nd edition)

Sun 21 April, 2019

[updated April 2020 with 2019 population data]

While Australian cities are growing outwards, densities are also increasing in established areas, and newer outer growth areas are some times at higher than traditional suburban densities.

So what’s the net effect – are Australian cities getting more or less dense? How has this changed over time? Has density bottomed out? And how many people have been living at different densities?

This post maps and measures population density over time in Australian cities.

I’ve taken the calculations back as far as I can with available data (1981), used the highest resolution population data available. I’ll discuss some of the challenges of measuring density using different statistical geographies along the way, but I don’t expect everyone will want to read through to the end of this post!

[This is a fully rewritten and updated version of a post first published November 2013]

Measuring density

Under traditional measures of density, you’d simply divide the population of a city by the area of the metropolitan region.

At the time of writing Wikipedia said Greater Sydney’s density was just 4.23 people per hectare (based on its Greater Capital City Statistical Area). To help visualise that, a soccer pitch is about 0.7 hectares. So Wikipedia is saying the average density of Sydney is roughly about 3 people per soccer field. You don’t need to have visited Sydney to know that is complete nonsense (don’t get me wrong, I love Wikipedia, but it really need to use a better measure for city density!).

The major problem with metropolitan boundaries – in Australia we use now Greater Capital City Statistical Areas – is that they include vast amounts of rural land and national parks. In fact, in 2016, at least 53% of Greater Sydney’s land area had zero population. That statistic is 24% in Melbourne and 14% in Adelaide – so there is also no consistency between cities.

Below is a map of Greater Sydney (sourced from ABS), with the blue boundary representing Greater Sydney:

One solution to this issue is to try to draw a tighter boundary around the urban area, and in this post I’ll also use Significant Urban Areas (SUAs) that do a slightly better job (they are made up of SA2s). The red boundaries on the above map show SUAs in the Sydney region.

However SUAs they still include large parks, reserves, industrial areas, airports, and large-area partially-populated SA2s on the urban fringe. Urban centres are slightly better (they are made of SA1s) but population data for these is only available in census years, the boundaries change with each census, the drawing of boundaries hasn’t been consistent over time, they include non-residential land, and they split off most satellite urban areas that are arguably still part of cities, even if not part of the main contiguous urban area.

Enter population-weighted density (PWD) which I’ve looked at previously (see Comparing the densities of Australian, European, Canadian, and New Zealand cities). Population-weighted density takes a weighted average of the density of all parcels of land that make up a city, with each parcel weighted by its population. One way to think about it is the average density of the population, rather than the average density of the land.

So parcels of land with no population don’t count at all, and large rural parcels of land that might be inside the “metropolitan area” count very little in the weighted average because of their relatively small population.

This means population-weighted density goes a long way to overcoming having to worry about the boundaries of the “urban area” of a city. Indeed, previously I have found that removing low density parcels of land had very little impact on calculations of PWD for Australian cities (see: Comparing the residential densities of Australian cities (2011)). More on this towards the end of this post.

Calculations of population-weighted density can also answer the question about whether the “average density” of a city has been increasing or decreasing.

But… measurement geography matters

One of the pitfalls of measuring population weighted density is that it very much depends on the statistical geography you are using.

If you use larger geographic zones you’ll get a lower value as most zones will include both populated and unpopulated areas.

If you use very small statistical geography (eg mesh blocks) you’ll end up with a lot fewer zones that are partially populated – most will be well populated or completely unpopulated, and that means your populated weighted density value will be much higher, and your measure is more looking at the density of housing areas.

To illustrate this, here’s an animated map of the Australian Capital Territory’s 2016 population density at all of the census geographies from mesh block (MB) to SA3:

Only at the mesh block and SA1 geographies can you clearly see that several newer outer suburbs of Canberra have much higher residential densities. The density calculation otherwise gets washed out quickly with lower resolution statistical geography, to the point where SA3 geography is pretty much useless as so much non-urban land is included (also, there are only 7 SA3s in total). I’ll come back to this issue at the end of the post.

Even if you have a preferred statistical geography for calculations, making international comparisons is very difficult because few countries will following the same guidelines for creating statistical geography. Near enough is not good enough. Worse still, statistical geography guidelines do not always result in consistently sized areas within a country (more on that later).

We need an unbiased universal statistical geography

Thankfully Europe and Australia have adopted a square kilometre grid geography for population estimates, which makes international PWD comparisons readily possible. Indeed I did one a few years ago looking at ~2011 data (see Comparing the densities of Australian, European, Canadian, and New Zealand cities).

This ABS is now providing population estimates on a square km grid for every year from 2006.

Here is what Melbourne’s estimated population density looks like on a km square grid, animated from 2006 to 2019:

The changes over time are relatively subtle, but if you watch the animation several times you’ll see growth – including relatively high density areas emerging on the urban fringe.

It’s a bit chunky, and it’s a bit of a matter of luck as to whether dense urban pockets fall entirely within a single grid square or on a boundary, but there is no intrinsic bias.

There’s also an issue that many grid squares will contain a mix of populated and non-populated land, particularly on the urban fringe (and a similar issue on coastlines). In a large city these will be in the minority, but in smaller cities these squares could make up a larger share of the total, so I think we need to be careful about this measure in smaller cities. I’m going to arbitrarily draw the line at 200,000 residents.

How are Australian cities trending for density using square km grid data? (2006 to 2019)

So now that we have an unbiased geography, we can measure PWD for cities over time.

The following chart is based on 2016 Significant Urban Area boundaries (slightly smaller than Greater Capital City Statistical Areas but also they go across state borders as appropriate for Canberra – Queanbeyan and Gold Coast – Tweed).

Technical notes: You cannot perfectly map km squares to Significant Urban Areas. I’ve included all kilometre grid squares which have a centroid within the 2016 Significant Urban Area boundaries (with a 0.01 degree tolerance added – which is roughly 1 km). Hobart appears only from 2018 because that’s when it crossed the 200,000 population threshold.

The above trend chart was a little congested for the smaller cities, so here is a zoomed in version without Sydney and Melbourne:

You can see most cities getting denser at various speeds, although Perth, Geelong, and Newcastle have each flat-lined for a few years.

Perth’s population growth slowed at the end of the mining boom around 2013, and infill development all but dried up, so the overall PWD increased only 0.2 persons/ha between 2013 and 2018.

Canberra has seen a surge in recent years, probably due to high density greenfield developments we saw above.

How is the mix of density changing? (2006 to 2019)

Here’s a look at the changing proportion of the population living at different densities for 2006-2019 for the five largest Australian cities, using square km grid geography:

It looks very much like the Melbourne breakdown bleeds into the Sydney breakdown. This roughly implies that Melbourne’s density distribution is on trend to look like Sydney’s 2006 distribution in around 2022 (accounting the for white space). That is, Melbourne’s density distribution is around 16 years behind Sydney’s on recent trends. Similarly, Brisbane looks a bit more than 15 years behind Melbourne on higher densities.

In Perth up until 2013 there was a big jump in the proportion of the population living at 35 persons / ha or higher, but then things peaked and the population living at higher densities declined, particularly as there was a net migration away from the inner and middle suburbs towards the outer suburbs.

Here’s the same for the next seven largest cities:

Of the smaller cities, densities higher than 35 persons/ha are only seen in Gold Coast, Newcastle, Wollongong and more recently in Canberra.

The large number of people living at low densities in the Sunshine Coast might reflect suburbs that contain a large number of holiday homes with no usual residents (I suspect the dwelling density would be relatively higher). This might also apply in the Gold Coast, Central Coast, Geelong (which actually includes much of the Bellarine Peninsula) and possibly other cities.

Also, the Central Coast and Sunshine Coast urban patterns are highly fragmented which means lots of part-urban grid squares, which will dilute the PWD of these “cities”.

Because I am sure many of you will be interested, here are animated maps for these cities:

Sydney

Brisbane

Perth

Adelaide

Canberra – Queanbeyan

Sunshine Coast

Gold Coast

Newcastle – Maitland and Central Coast

Wollongong

Geelong

What are the density trends further back in time using census data?

The census provides the highest resolution and therefore the closest measure of “residential” population weighted density. However, we’ve got some challenges around the statistical geography.

Prior to 2006, the smallest geography at which census population data is available is the collector district (CD), which average around 500 to 600 residents. A smaller geography – the mesh block (MB) – was introduced in 2006 and averages around 90 residents.

Unfortunately, both collector districts and mesh blocks are not consistently sized across cities or years (note: y axis on these charts does not start at zero):

Technical note: I have mapped all CDs and MBs to Greater Capital City Statistical Area (GCCSA) boundaries, based on the entire CD fitting within the GCCSA boundaries (which have not yet changed since they were created in 2011).

There is certainly some variance between cities and years, so we need to proceed with caution, particularly in comparing cities. Hobart and Adelaide have the smallest CDs and MBs on average, while Sydney generally has larger CDs and MBs. This might be a product of whether mesh blocks were made too small or large, or it might be that density is just higher and it is more difficult to draw smaller mesh blocks. The difference in median population may or may not be explained by the creation of part-residential mesh blocks.

Also, we don’t have a long time series of data at the one geography level. Rather than provide two charts which break at 2006, I’ve calculated PWD for both CD and mesh block geography for 2006, and then estimated equivalent mesh block level PWD for earlier years by scaling them up by the ratio of 2006 PWD calculations.

In Adelaide, the mesh block PWD for 2006 is 50% larger than the CD PWD, while in the Australian Capital Territory it is 110% larger, with other cities falling somewhere in between.

Would these ratios hold for previous years? We cannot be sure. Collector Districts were effectively replaced with SA1s (with an average population of 500, only slightly smaller) and we can calculate the ratio of mesh block PWD to SA1 PWD for 2011 and 2016. For most cities the ratio in 2016 is within 10% of the ratio in 2011. So hopefully the ratio of CD PWD to mesh block PWD would remain fairly similar over time.

So, with those assumptions, here’s what the time series then looks like for PWD at mesh block geography:

As per the square km grid values, Sydney and Melbourne are well clear of the pack.

Most cities had a PWD low point in 1996. That is, until around 1996 they were sprawling at low densities more than they were densifying in established areas, and then the balance changed post 1996. Exceptions are Darwin which bottomed out in 2001 and Hobart which bottomed in 2006.

The data shows rapid densification in Melbourne and Sydney between 2011 and 2016, much more so than the square km grid data time series. But we also saw a significant jump in the median size of mesh blocks in those cities between 2011 and 2016 (and if you dig deeper, the distribution of mesh block population sizes also shifted significantly), so the inflection in the curves in 2011 are at least partly a product of how new mesh block boundaries were cut in 2016, compared to 2011. Clearly statistical geography isn’t always good for time series and inter-city analysis!

How has the distribution of densities changed in cities since 1986?

The next chart shows the distribution of population density for Greater Capital City Statistical Areas based on collector districts for the 1986 to 2006 censuses:

You can more clearly see the decline in population density in most cities from 1986 to 1996, and it wasn’t just because most of the population growth was a lower densities. In Hobart, Canberra, Adelaide, Brisbane and Melbourne, the total number of people living at densities of 30 or higher actually reduced between 1986 and 1996.

Here is the equivalent chart for change in density distribution by mesh block geography for the capital cities for 2006, 2011, and 2016:

I’ve used the same colour scale, but note that the much smaller geography size means you see a lot more of the population at the higher density ranges.

The patterns are very similar to the distribution for square km grid data. You can see the how Brisbane seems to bleed into Melbourne and then into Sydney, suggesting a roughly 15 year lag in density distributions. This chart also more clearly shows the recent rapid rise of high density living in the smaller cities of Canberra and Darwin.

The next chart shows the 2016 distribution of population by mesh block density using Statistical Urban Area 2016 boundaries, including the smaller cities:

Gold Coast and Wollongong stand out as smaller cities with a significant portion of their population at relatively high densities, but a fair way off Sydney and Melbourne.

(Sorry I don’t have a mesh block times series of density distribution for the smaller cities – it would take a lot of GIS processing to map 2006 and 2011 mesh blocks to 2016 SUAs, and the trends would probably be similar to the km grid results).

Can we measure density changes further back in history and for smaller cities?

Yes, but we need to use different statistical geography. Annual population estimates are available at SA2 geography back to 1991, and at SA3 geography back to 1981.

However, there are again problems with consistency in statistical geography between cities and over time.

Previously on this blog I had assumed that guidelines for creation of statistical geography boundaries have been consistently applied by the ABS across Australia, resulting in reasonably consistent population sizes, and allowing comparisons of population-weighted density between cities using particular levels of statistical geography.

Unfortunately that wasn’t a good assumption.

Here are the median population sizes of all populated zones for the different statistical geographies in the 2016 census:

Note: I’ve used a log scale on the Y-axis.

While there isn’t a huge amount of variation between medians at mesh block and SA1 geographies, there are massive variations at SA2 and larger geographies.

SA2s are intended to have 3,000 to 25,000 residents (a fairly large range), with an average population of 10,000 (although often smaller in rural areas). You can see from the chart above that there are large variances between medians of the cities, with the median size in Canberra and Darwin below the bottom of the desired range.

I have asked the ABS about this issue. They say it is related to the size of gazetted localities, state government involvement, some dense functional areas with no obvious internal divisions (such as the Melbourne CBD), and the importance of capturing indigenous regions in some places (eg the Northern Territory). SA2 geography will be up for review when they update statistical geography for 2021.

While smaller SA2s mean you get higher resolution inter-censal statistics (which is nice), it also means you cannot compare raw population weighted density calculations between cities at SA2 geography.

However, all is not lost. We’ve got calculations of PWD on the unbiased square kilometre grid geography, and we can compare these with calculations on SA2 geography. It turns out they are very strongly linearly correlated (r-squared of over 0.99 for all cities except Geelong).

So it is possible to estimate square km grid PWD prior to 2006 using a simple linear regression on the calculations for 2006 to 2018.

But there is another complication – ABS changed the SA2 boundaries in 2016 (as is appropriate as cities grow and change). Data is available at the new 2016 boundaries back to 2001, but for 1991 to 2000 data is only available on the older 2011 boundaries. For most cities this only creates a small perturbation in PWD calculations around 2001 (as you’ll see on the next chart), but it’s larger for Geelong, Gold Coast – Tweed Heads and Newcastle Maitland so I’m not willing to provide pre-2001 estimates for those cities.

The bottom of this chart is quite congested so here’s an enlargement:

Even if the scaling isn’t perfect for all history, the chart still shows the shape of the curve of the values.

Consistent with the CD data, several cities appear to have bottomed out in the mid 1990s. On SA2 data, that includes Adelaide in 1995, Perth and Brisbane in 1994, Canberra in 1998 and Wollongong in 2006.

Can we go back further?

If we want to go back another ten years, we need to use SA3 geography, which also means we need to switch to Greater Capital City Statistical Areas as SA3s don’t map perfectly to Significant Urban Areas (which are constructed of SA2s). Because they are quite large, I’m only going to estimate PWD for larger cities which have reasonable numbers of SA3s that would likely have been fully populated in 1981.

I’ve applied the same linear regression approach to calculate estimated square kilometre grid population weighted density based on PWD calculated at SA3 geography (the correlations are strong with r-squared above 0.98 for all cities).

The following chart shows the best available estimates for PWD back to 1981, using SA3 data for 1991 to 2000, SA2 data for 2001 to 2005, and square km grid data from 2006 onwards:

Technical notes: SA3 boundaries have yet to change within capital cities, so there isn’t the issue we had with SA2s. The estimates based on SA2 and SA3 data don’t quite line up between 1990 and 1991 which demonstrates the limitations of this approach.

The four large cities shown appear to have been getting less dense in the 1980s (Melbourne quite dramatically). These trends could be related to changes in housing/planning policy over time but they might also be artefacts of using such a coarse statistical geography. It tends to support the theory that PWD bottomed out in the mid 1990s in Australia’s largest cities.

Could we do better than this for long term history? Well, you could probably do a reasonable job of apportioning census collector district data from 1986 to 2001 censuses onto the km grid, but that would be a lot of work! It also wouldn’t be perfectly consistent because ABS use dwelling address data to apportion SA1 population estimates into kilometre grid cells. Besides we have reasonable estimates using collector district geography back to 1986 anyway.

Melbourne’s population-weighted density over time

So many calculations of PWD are possible – but do they have similar trends?

I’ve taken a more detailed look at my home city Melbourne, using all available ABS population figures for the geographic units ranging from mesh blocks to SA3s inside “Greater Melbourne” and/or the Melbourne Significant Urban Area (based on the 2016 boundary), to produce the following chart:

Most of the datasets show an acceleration in PWD post 2011, except the SA3 calculations which are perhaps a little more washed out. The kink in the mesh block PWD is much starker than the other measures.

The Melbourne SUA includes only 62% of the land of the Greater Melbourne GCCSA, yet there isn’t much difference in the PWD calculated at SA2 geography – which is the great thing about population-weighted density.

All of the time series data suggests 1994 was the year in which Melbourne’s population weighted density bottomed out.

Appendix 1: How much do PWD calculations vary by statistical geography?

Census data allows us to calculate PWD at all levels of statistical geography to see if and how it distorts with larger statistical geography. I’ve also added km grid PWD calculations, and here are all the calculations for 2016:

Technical note: square km grid population data is estimated for 30 June 2016 while the census data is for 9 August 2016. Probably not a significant issue!

You can see cities rank differently when km grid results are compared to other statistical geography – reflecting the biases in population sizes at SA2 and larger geographies. Wollongong and Geelong also show a lot of variation in rank between geographies – probably owing to their small size.

The cities with small pockets of high density – in particular Gold Coast – drop rank with large geography as these small dense areas quickly get washed out.

I’ve taken the statistical geography all the way to Significant Urban Area – a single zone for each city which is the same as unweighted population density. These are absurdly low figures and in no way representative of urban density. They also suggest Canberra is more dense than Melbourne.

Appendix 2: Issues with over-sized SA1s

As I’ve mentioned recently, there’s an issue that the ABS did not create enough reasonably sized SA1s in some city’s urban growth areas in 2011 and 2016. Thankfully, it looks like they did however create a sensible number of mesh blocks in these areas, as the following map (created with ABS Maps) of the Altona Meadows / Point Cook east area of Melbourne shows:

In the north parts of this map you can see there are roughly 4-8 mesh blocks per SA1, but there is an oversized SA1 in the south of the map with around 50 mesh blocks. This will impact PWD calculated at SA1 geography, although these anomalies are relatively small when you are looking at a city as large as Melbourne.


Are Australian cities sprawling with low-density car-dependent suburbs?

Wed 30 January, 2019

Many people talk about urban growth in Australian cities being car-dependent low-density suburban sprawl. But how true is that in more recent times? Are new greenfield density targets making a difference? Are cities growing around their rapid public transport networks? And how do growth areas compare to established areas at a similar distance out from city centres?

This post takes a look at what census data can tell us about outer urban growth areas in terms of population density, motor vehicle ownership, distance from train/busway stations, and journey to work mode shares.

How much of city population growth is in outer areas?

Firstly a recap, here is the percentage of annual population growth in each city that has occurred in “outer” areas (defined by groupings of SA3s around the edges of cities – refer my previous post for maps showing outer areas) for Greater Capital City Statistical Areas.

Sydney has had less than a third of its population growth in outer areas since around 2003, while Perth has mostly had the highest outer growth percentage (since 1996), and more recently pretty much all population growth in Perth has been on the fringe. You can see how the other cities sit in between.

However, not all of this “outer” population growth was in urban growth on the fringe. For that we need to distinguish between urban growth and infill development, even in “outer” areas. So we really need a better definition of outer growth areas.

How to define outer urban growth areas

I have built groupings of SA1s (Statistical Area Level 1) that try to represent outer urban greenfield residential development. SA1s are the smallest census geographic areas (average population 400) for which all census data variables are available.

I’ve selected 2016 SA1s that meet all of the following criteria:

  • Brand new SA1 or significant population growth: The 2016 SA1 is new and cannot be matched to a 2011 SA1 (by location/size and/or ABS correspondences), or if it can be matched, the population at least doubled between 2011 and 2016. Brand new SA1s are very common in urban growth areas as new SA1s are created to avoid oversized SA1s on last census boundaries (except this doesn’t always happen – more on that shortly).
  • In an SA2 with significant population growth: The SA2 (Statistical Area Level 2 – roughly suburb sized with typically 3,000 to 25,000 residents) that contains the SA1 had population growth of at least 1000 people between 2011 and 2016 (based on 2016 boundaries). That is, the general area is seeing population growth, not just one or two SA1s.
  • Are on – or close to – the urban fringe. I’ve filtered out particular SA2s that I’ve judged to be contain all or mostly in-fill development rather than greenfield development, or that are largely surrounded by existing urban areas and are not close to the urban fringe. I’ll be the first to admit that some of the inclusions/exclusions are a little arbitrary.

The criteria aren’t perfect, but it seems to work pretty well when I inspect the data. I’m calling these “Growth SA1s” or outer urban growth in this post.

For urban centres, I’m using Significant Urban Area 2016 boundaries (rather than Greater Capital City boundaries), and I’ve bundled Yanchep with Perth, Melton with Melbourne, and the Sunshine Coast and Gold Coast with Brisbane to form South East Queensland (SEQ).

Where are these outer urban growth areas?

What follows are maps for each city with the density of these growth SA1s shown by colour.

Melbourne’s northern and western growth areas:

Technical note: The maps do not show non-growth SA1s with fewer than 5 people per hectare, or “growth SA1s” with fewer than 1/hectare, although these SA1s are including in later analysis.

And the south of Melbourne:

Note: not shown on these Melbourne maps are isolated tiny growth SA1s in Rosebud and Mooroolbark.

Here are Sydney’s growth SA1s – all in the western suburbs:

Next up South East Queensland, starting in the north with the Sunshine Coast:

Northern Brisbane:

Outer urban growth is scattered in southern Brisbane and northern Gold Coast:

Gold Coast – Tweed Heads:

Perth’s northern and eastern growth areas:

Perth’s southern growth areas:

Note: Canning Vale East is an inclusion you could debate – the previous land use of the growth SA1s appear to have been rural based on satellite imagery.

Northern Adelaide:

Southern Adelaide:

And finally Canberra:

So how much of each cities’ population growth has been in outer growth areas?

Here’s a breakdown of the population growth for my six urban areas:

Over the five-year period, outer urban growth areas accounted for 19% of Sydney’s population growth, 43% of Melbourne’s, 37% of SEQ’s, 60% of Perth’s, 27% of Adelaide’s and 69% of Canberra’s.

Technical note: These “outer urban growth” figures are different to the chart at the top of this post which had a coarser definition of “outer” and used Greater Capital City boundaries. Some of my “outer urban growth” areas actually don’t quality as “outer” in the coarser definition, and I’ve also excluded several “outer” SA2s from “outer urban growth” where I’ve deemed the growth to be mostly infill. Hence the differences.

In case you are wondering, it’s not easy to create a longer-term time-series analysis about the proportion of population growth in “outer urban growth” areas because the classification of SA2s would have to change on a year-by-year basis which would be messy and somewhat arbitrary.

A challenge for density analysis: some SA1s are over-sized

You might have noticed some SA1s in the maps above are very large and show a low average density of 1-5 persons per hectare (I’ve coloured them in a light cyan). Many of these SA1s had thousands of residents in 2016, which is way more than the ABS guideline of 200 to 800 residents. Unfortunately what seems to have happened for 2011 and 2016 in some cities is that the ABS did not create enough SA1s to account for new urban areas. Some Melbourne SA1s had a population over 4000 in 2016. Many of these SA1s contain a combination or urban and rural land use, so their calculated density is rather misleading.

I’m designating any SA1s with more than 1000 residents and larger than 100 hectares as “oversized”, and I’ve exclude these from some density analysis below. Here’s a chart showing the proportion of outer growth area populations that are in oversized SA1s:

You can see it is a substantial problem in Sydney, Melbourne, Perth and South East Queensland, but miraculously not a problem at all in Adelaide or Canberra (I’m sure someone in ABS could explain why this is so!).

If you are interested, in 2011 it was a bigger problem in Melbourne, and only Canberra was fully clean.

So how dense are outer urban growth areas?

Firstly, I am excluding over-sized SA1s from this analysis for the reasons just mentioned.

Secondly, all cities will also have growth areas that were partially developed at the time of the census (ie some lots with occupied houses and other lots empty) so the densities measured here may be understated of the likely fully built-out density of these SA1s. That said, those areas perhaps are more likely to be in over-sized SA1s, but it’s hard to be sure. So keep this in mind when looking at growth area densities.

You can see dramatic differences, with Sydney, Canberra, and Melbourne showing higher densities, and South East Queensland with much lower densities. As we saw on the maps above, South East Queensland’s outer growth areas are very dispersed, so perhaps more of them are growing slowly and more of them are partially built-out? It’s hard to be sure.

But perhaps what is most remarkable is that Canberra had the highest densities in outer urban growth areas of any city – nothing like what you might consider suburban sprawl. Here’s what was 144.5 people per hectare in 2016 in Wright on Canberra’s new western growth front looks like:

(pic from Google Streetview, dated December 2016)

The densest SA1 in Sydney’s growth areas was 101 persons/ha. Nothing like this was seen in other cities.

Canberra’s outer growth areas are actually, on average, denser than the rest of Canberra (on a population weighted density measure):

The same was also true by a slim margin in both Perth and Adelaide, but they have relatively “suburban” densities for both growth and established areas. The growth areas of Sydney and Melbourne are more dense than Perth and Adelaide, but not compared to the rest of these cities as a whole. That’s probably got to do a lot with the large cities having dense inner suburbs.

So perhaps it is better to compare the urban growth areas with established areas a similar distance from city centres, which the following chart does (I’ve filtered out 5 km distance intervals without growth areas of at least 2000 population, and apologies for rather squashed Canberra label):

Technical note: for South East Queensland I’ve measured distances from the Brisbane CBD.

Outer growth areas were much more dense than the rest of each city at most distances from the city centre, except in Sydney.

One issue with the above chart is that different distance intervals have different populations – for example only 2,815 people were in growth SA1s at a distance of 45-50 km from the Perth CBD (just above my threshold of 2000), so the low population density of that interval is not hugely significant.

To get around that issue, I’ve calculated the overall population weighted density of non-growth SA1s that are within these 5 km distance intervals from the CBD (including all of SEQ beyond 15 km from the CBD). The following chart compares those calculations with the population weighted density of the growth areas overall:

This shows that urban growth areas are on average more dense than other parts of the city at similar distance from the CBD, except in South East Queensland. And remember, many of the growth SA1s will be partially built out, so their expected density is understated.

Are outer urban growth areas near rapid public transport?

The next chart shows the proportion of growth SA1 population by distance from the nearest train or busway station:

Technical notes: Distances are measured from the centroid of each SA1 to a point location defined for each station (sourced from August 2016 GTFS feeds). For oversized SA1s these distances might be a little longer than reality for the average resident. I haven’t excluded oversized SA1s because I want to see the population alignment of growth areas overall. Canberra excluded due to lack of separated rapid transit.

What sticks out clearly is that just over half the of the population in Perth’s outer growth areas was more than 5 km from a station in 2016. That is to say Perth has had the least alignment of outer urban growth areas and rapid public transport networks of all five cities. I’m not sure many urban planners would recommend such a strategy.

However, Perth’s MetroNet program appears to be trying to rectify this with new lines and stations proposed near urban growth areas such as Yanchep, Canning Vale East, Ellenbrook, Byford, and Karnup (Golden Bay). It will however take some time to get to them all built and open.

South East Queensland was second to Perth in terms of urban growth remote from stations, with a lot of the growth scattered rather than concentrated around rail corridors. I haven’t included the Gold Coast light rail in my proximity calculation – it runs at an average speed of 27 km/h (which is slower than most train networks) and doesn’t serve outer urban growth areas.

Sydney and Adelaide had the highest proximity of growth areas to stations.

Around half of Melbourne’s growth SA1s that were more than 5km from a train station were in Mernda and Doreen, a corridor in which a rail extension opened in 2018. Many of the rest are not in the current designated growth corridors, or are where future train stations are planned. Melbourne’s current designated urban growth corridors are fairly well aligned to its train network. From a transport perspective this is arguably a better kind of sprawl than what Perth has been experiencing.

Adelaide’s outer growth areas more than 5 km from a station were in Mount Barker (satellite town to the east) and Aldinga (on the far south coast of Adelaide).

Are the outer urban growth areas better aligned to rapid public transport stations than non-growth areas at the same distance from city centres? Here’s the chart as above but with an extra column for non-growth areas within the same distance intervals from the CBD (as before).

The populations of urban growth areas are less likely to be within a couple of kilometres of a station (most of that land probably has long-established urban development), but curiously in Adelaide and South East Queensland the urban growth areas are more likely to be within 5 kilometres of a station than the non-growth areas, suggesting better rapid public transport alignment than older urban growth areas. Older urban areas in other cities are more closely aligned to stations, particularly in Perth.

As an interesting aside, here’s a breakdown over the last three censuses of population by distance from train/busway stations (operational in 2016 – so it overstates 2006 and 2011 slightly):

You can really see how Perth has had much population growth remote from its rapid public transport network, which probably goes some way to explaining the overall 1.2% journey to work mode shift towards private transport between 2011 and 2016.

So how did people in these outer growth areas get to work?

Technical note: The figures here for “private transport” are for journeys involving only private transport modes – i.e. they exclude journeys involving both private and public transport (eg car+train).

While private transport (mostly car driver only journeys) dominated journeys to work from almost all growth areas, Melbourne and Sydney were the only cities to see significant numbers of residents in outer growth areas with private transport mode shares below 80%.

South East Queensland’s outer urban growth areas were the most reliant on private transport to get to work, with an overall private transport mode share of 93%, followed by Adelaide on 92%, Canberra on 91%, Perth on 90%, Melbourne on 86%, and Sydney on 81%.

Here’s how the growth area mode shares compare to other areas a similar distance from city centres (note: the Y-axis is not zero-based):

Significantly, the growth areas of Sydney and Melbourne had lower private transport mode shares of journeys to work than other parts of the city a similar distance out – even though they are generally further away from train or busway stations (as we saw above)! That’s not to say they didn’t drive themselves to a train station to get to work.

Similar to population density, here is a summary of growth areas compared to other areas in the same distance interval from the CBD:

There’s really not a huge amount of difference within cities. Sydney’s growth areas had a mode share 1.5% lower than non-growth areas, while Canberra’s growth areas had a mode share 2.5% higher.

What are motor vehicle ownership rates like in the outer growth areas?

My preferred measure is household motor vehicles per persons aged 18-84 (roughly people of driving age).

Motor vehicle ownership rates are generally very high across the growth areas – with the notable exceptions of Melbourne and Canberra where around a quarter of the growth area population had a motor vehicle ownership rate of less than 80 (although that is still pretty high!). (I explored this in more detail in an earlier post on Melbourne)

South East Queensland, Perth, and Adelaide outer urban growth areas had the highest motor vehicle ownership rates. Perth’s urban growth areas overall averaged 96.7 motor vehicles per persons aged 18-84 – pretty close to saturation.

How does motor vehicle ownership compare to established areas a similar distance from the city centre? The following chart compares motor vehicle ownership between urban growth and other areas at the same distance from the CBD (note: the Y-axis is not zero-based):

Motor vehicle ownership tends to increase with distance from the CBD, and in Sydney and South East Queensland the growth areas have higher ownership compared to non-growth areas. But the opposite is true in Melbourne, Perth and Canberra.

The population at each distance interval varies considerably, so here is a summary of the data across all distance intervals that have growth SA1s for each city:

The growth areas of Melbourne, Perth and Canberra had slightly lower motor vehicle ownership than other areas a similar distance from the city, while the opposite was true in other cities. That said, motor vehicle ownership rates are very high across all cities.

 

Finally, I’ll look at the relationships between these measures for growth areas (see another post for analysis for whole cities).

How does motor vehicle ownership relate to distance from stations?

Technical note: for scatter plots I’ve filtered out SA1s with less than 50 population as they are more likely to have outlier results (one person can change a measure by 2% or more).

Lower rates of motor vehicle ownership are generally only found close to train/busway stations (and are dominated by Melbourne examples), but close proximity to a station does not guarantee lower rates of motor vehicle ownership. Quite a few Adelaide SA1s are found the top middle part of the chart – these are all in Mount Barker which has frequent peak period express buses to the Adelaide CBD operating along the South East Freeway – which is similar to rapid transit although without a dedicated right of way.

How do journey to work mode shares relate to distance from stations?

Here’s a scatter plot of private transport mode shares of journeys to work and distance from train/busway station:

This shows that lower private transport mode shares are only generally seen within proximity of train or busway stations, and areas remote from stations are very likely to have high private transport mode shares. But also that proximity to a station does not guarantee lower private transport mode shares of journeys to work (particularly in SEQ).

Technical aside: You might have noticed that almost no SA1s report 99% private mode share. How can that be? The ABS make random adjustments to small figures to avoid identification of individuals which means you never see counts of 1 and 2 in their data. To get a mode share of 99% you’d need at least 300 journeys to work with “3” being non-private (or a similar but larger ratio). Very few SA1s have 300+ journeys to work, and even for over-sized SA1s, they are very unlikely to have only 3 or 4 non-private journeys to work. A mode share of 100% is much easier because you can get that no matter the total number of journeys.

How does population density relate to distances from train/busway stations?

Densities above 45 persons/ha were mostly only found within 5 km of stations, and almost entirely in Sydney and Melbourne. The highest densities were very close to train stations in Sydney. In the middle area of the chart you can see quite a few Perth SA1s that are around 30-40 persons/ha but remote from stations. These are all in the Ellenbrook area of Perth’s north-east, generating a lot of car traffic.

How does motor vehicle ownership relate to private transport mode shares of journeys work to work?

For interest, here is the relationship as a scatter plot:

There is certainly a relationship, but it’s not strong (r-squared = 0.22). Other factors are at play.

Conclusions

  • Perth and Canberra are seeing most of their population growth on the fringe, with Sydney, Adelaide, Melbourne, and South East Queensland seeing most of their population growth in established areas.
  • Growth areas in Sydney, Melbourne, and Canberra have higher than traditional urban densities, indeed Sydney and Canberra have a few very high density greenfield developments. Perth, Adelaide, and particularly South East Queensland have urban growth at relatively low densities. In fact, SEQ is the only major urban centre where growth areas are measured as less dense than non-growth areas at similar distances from the CBD.
  • Perth’s urban growth areas are largely remote from rapid transit stations, and this is likely contributing directly to very high and increasing rates of motor vehicle ownership and private transport mode shares. Melbourne’s current urban growth corridors are closely aligned to train stations (thanks to the opening of the Mernda line), and this is also largely true of Sydney and Adelaide.
  • Almost all outer urban growth areas had high rates of motor vehicle ownership. Overall, Melbourne, Perth, and Canberra’s outer urban growth areas had slightly lower rates of motor vehicle ownership compared to other areas at the same distance from the CBD. Only Sydney, Melbourne and Canberra have some growth areas with lower motor vehicle ownership and/or lower private transport mode shares of journeys to work – and these were all close to train or busway stations.

I hope you’ve found this at least half as interesting as I have.

For a similar and more detailed analysis around these topics, see this excellent 2013 BITRE research report on changes between 2001 and 2006.


What explains variations in journey to work mode shares between and within Australian cities?

Thu 6 December, 2018

Private and public transport journey to work mode shares vary considerably both between Australian cities and within them. Are these differences related to factors such as population density, motor vehicle ownership, employment density, proximity to train stations, proximity to busway stations, jobs within walking distance of homes, and distance from the city centre?

This posts sheds some light on those relationships for Australia’s six largest cities. I’m afraid it isn’t a short post (so get comfortable) but it’s fairly comprehensive (over 30 charts).

I should stress up front that a strong relationship between a certain factor and high or low mode shares does not imply causation. There are complex relationships between many of these factors, for example motor vehicle ownership rates are generally lower in areas of higher residential density (which I will also explore), and more factors beyond what I will explore here.

If you are interested in seeing spatial mode share patterns, see previous posts for Melbourne, Brisbane, and Sydney. You might also be interested in my analysis explaining the mode shifts between 2011 and 2016.

Population density

Higher population densities are commonly associated with higher public transport use. This stands to reason, as high density areas have more potential users per unit of area, but also higher density is likely to mean high land prices, which in turn increases the cost of residential parking. But higher public transport mode share can only happen if government’s invest in higher service levels, and this isn’t guaranteed to happen (although it often does, through pressures of overcrowding).

My preferred measure is population weighted density, which is the weighted average density of land parcels in a city, weighted by their population (this gets around problems of including sparsely populated urban land). I’ve measured it at census district (CD) geography for 2006 and Statistical Area Level 1 (SA1) geography for 2011 and 2016, using 2011 Significant Urban Area boundaries to define cities. The 2006 density figures are not perfectly comparable with 2011 and 2016 because CDs are slightly larger than SA1s, so the density values will be calculated as slightly smaller.

Here is the relationships at city level (the thin end of each worm is 2006 and the thick end 2016, with 2011 in the middle):

The relationship is very strong for Melbourne and Sydney over time. Between 2011 and 2016, Perth and Brisbane saw increased population density but reduced public transport mode share (mostly because of changes in the distribution of jobs between the centre and the suburbs).

Brisbane was a bit of an outlier in 2006 and 2011 with high public transport mode share relative to its lower population density.

Canberra is also perhaps a bit of an outlier, with much lower public transport mode share compared to similarly low density cities. This might be explained by the smaller total population, lower jobs density, and lack of rapid public transport services segregated from traffic.

But Canberra does have higher active transport mode share, so it’s worth doing the same analysis with private transport mode shares:

Brisbane was still an outlier in the relationship in 2006 and 2011, but Canberra is more in line with other data points.

Another interesting note is that Canberra went from being the least dense city in 2006 to the third most dense in 2016.

Drilling down to SA2 geography (SA2s are roughly the size of a suburb), here’s a chart showing all SA2s in all cities across the three census years (filtered for CDs and SA1s with at least 5 persons per hectare). I’ve animated it to highlight one city at a time so you can compare the cities, and I’ve used a log scale on the X-axis to spread out the data points (only the Sydney and Melbourne CBDs go off the chart to the right).

(if these animated GIF charts are not clear on your screen, you can click to enlarge the image, then use “back” to come back to this page).

You can see a fairly strong relationship, although it is very much a “cloud” rather than a tight relationship – there are other factors at play.

What I find interesting is that Sydney has had a lot of SA2s with population weighted densities around 50-100 but private mode shares over 55% (toward the upper-right part of the cloud of data points) – which are rare in all other cities. That’s a lot of traffic generation density, which cannot be great for road congestion. In a future post I might focus in on the outlier SA2s that are in the top right of these charts (can public transport do better in those places?).

In case you are wondering about the Brisbane SA2 with low density and low private transport mode share (middle left of chart) it is the Redland Islands where car-carrying ferries are essential to get off an island, and are counted as public transport in my methodology. The Canberra outlier in the bottom left is Acton (which is dominated by the Australian National University).

Employment density

I’ve calculated a weighted job density in the same way I’ve calculated population weighted density, but using Destination Zones (which can actually be quite large so it certainly isn’t perfect). Weighted job density is a weighted average of job densities of all destination zones, weighted by the number of jobs in each zone. In a sense it is the density at which the average person works

(technical notes: I’ve actually only counted jobs as people who travelled on census day and reported their mode(s) of travel. Unfortunately I only have 2006 data for Sydney and Melbourne)

This chart suggests a very strong relationship at the city level, with all cities either moving up and left (Adelaide, Perth and Brisbane) or down and right (Sydney, Melbourne, Canberra).

So is the relationship as strong when you break it down to the Destination Zone level? The next chart shows jobs density and private mode share for all destination zones for 2016. Note that there is a log scale on the x-axis, and Adelaide dots are drawn on top of other cities in the top left which explains why that dense cloud of dots appears mostly green.

There’s clearly a strong relationship, although again the data points form a large cloud rather than tightly bunch around a line, so other factors will be at play.

It’s also interesting to see that the blue Sydney dots are generally lower than other cities at all job densities. That is, Sydney generally has lower private transport mode shares than other cities, regardless of employment density.

Which leads us to the next view: the private transport mode shares for jobs in different density ranges in each city for 2011 and 2016.

(click to enlarge if the chart appears blurry)

You can see a fairly consistent relationship between weighted job density and mode shares across all cities in both 2011 and 2016.

At almost all job density ranges, Sydney had the lowest average private transport mode share, while Adelaide and Perth were generally the highest (data points are not shown when there are fewer than 5 destination zones at a density range for a city). This shows that something other than jobs density is impacting private transport mode shares in Sydney. Is it walking catchment, public transport quality & quantity, or something else?

For more on the relationship between job density and mode share, see this previous post.

Proximity to public transport

Trains generally provide the fastest and most punctual public transport services (being largely separated from road traffic and having longer stop spacing), and are the most common form of rapid transit in Australian cities. So you would expect higher public transport mode shares around train stations.

Here is a chart showing average journey to work public transport mode shares by home distance from train stations. It’s animated over the three census years, with a longer pause on 2016.

Technical note: A limitation here is that I’ve measured all census years against train stations that were operational in 2016 – so the 2006 and 2011 mode shares will be under-stated for the operational stations of those years. For example, in Melbourne the following stations opened between 2011 and 2016: Williams Landing, South Morang, Lynbrook, and Cardinia Road.

You can see that public transport shares went up between 2006 and 2011 in most cities at all distances from train stations. In both Perth and Brisbane there were new train lines opened between 2006 and 2011, which will explain some of that growth.

But if you watch carefully you will see public transport mode shares near train stations fell in both Brisbane and Perth between 2011 and 2016. That is, there was a mode shift away from public transport, even for people living close to train stations. As discussed previously, this is most likely related to there being only small jobs growth in the CBDs of those cities between 2011 and 2016, compared to suburban locations.

You can also see that public transport mode shares aren’t that much higher for areas near train stations in Adelaide (I’ll come back to that).

We can do the same for train mode shares (any journey involving train):

Again, Sydney’s train stations seem to have the biggest pulling power, while Adelaide’s have the least.

Busways are the other major form of rapid transit in Australian cities, with major lines in Brisbane, Sydney and Adelaide. Here is a chart of public transport mode share by distance from busway stations, excluding areas also within 1.5 km of a train station:

Note for Adelaide this data only considers suburban stations on the O-bahn, and not bus stops in the CBD. For Sydney all “T-Way” station are included, plus the four busway stations on the M2 motorway for which buses run into the CBD (but not the relatively short busway along Anzac Parade in Moore Park). Sydney’s north west T-Ways opened in 2007

Proximity to a busway station appears to influence public transport mode share strongly in Brisbane and Adelaide, where busways are mostly located in the inner and middle suburbs and cater for trips to the CBD. Sydney’s busway stations are in the “outer” western suburbs, feeding Blacktown, Parramatta, but also relatively long distance services to the Sydney CBD via the M2.

Curiously, public transport mode shares were higher in places between 3 and 5 km from busway stations in Sydney, compared to immediately adjacent areas. I’m not sure that I can explain that easily, but it suggests equally attractive public transport options exist away from busway and train stations.

The station proximity influence appears to extend around 1 km, which possibly reflects the fact that few busway stations have park and ride facilities, and are therefore more dependent on walking as an access mode (although cycling may be another station access mode).

Over time Sydney public transport mode share lifted at all distances from busway stations, while in Brisbane it rose in 2011 and then fell again in 2016, in line with other city mode shares.

So are busway stations similar to train stations in their impact on public transport mode share? To answer this I’ve segmented cities into areas near train stations, near busway stations, near both, and near neither. I’ve used 1.5 km as a proximity threshold that might represent an extended walking catchment.

In Sydney, train stations appear to have a much stronger influence on public transport mode shares than busway stations, but the opposite is true in Brisbane and Adelaide. This possibly reflects the much higher service frequencies on Adelaide and Brisbane busways compared to their trains, and the fact Sydney’s busway stations are so far from the CBD (and thus have fewer workers travelling to the CBD where public transport dominates mode share).

Also of note in this chart is that for areas more than 1.5 km from a train or busway station, Sydney had a much higher public transport mode share compared to the other cities. These areas will be served mostly by on-road buses, but also some ferries and one light rail line. Adelaide has the least difference between mode share for areas near and not-near train or busway stations.

We can do the a similar analysis for workplaces:

The most curious pattern here is Adelaide – where public transport mode share was highest for jobs between 1.5-2.5 kms from train stations. This distance band is dominated by the centre of the Adelaide CBD (the station being on the edge, arguably a “corner”), for which bus was the dominant public transport access mode. Also, there was no destination zone small enough near Adelaide central train station to register as 0 – 0.5 km away, and only one that is 0.5 – 1 km away (I use distances between station data points and destination zone centroids). So the results might look slightly different if smaller destination zones were drawn in the Adelaide CBD.

In all other cities there was a very strong relationship between train station proximity and public transport mode share, as you would expect. And Sydney again stands out with high public transport mode shares for workplaces more distant from train stations.

If you are wondering, the bump in Sydney at 2.5 to 3 km includes the Kensington / Randwick area which has high employment density and a strong bus connection to the central city (partly assisted by the Anzac Parade busway). And the relatively high figure for Melbourne at 1 – 1.5 km includes parts of Docklands, Parkville, Southbank, and St Kilda Road, which all have high tram service levels.

Unfortunately destination zones around busway stations are generally too large to provide meaningful insights so I’m not presenting such data.

Motor vehicle ownership

It will come as little surprise that there is a relationship between household motor vehicle ownership and journey to work mode shares.

Here’s a summary chart for each city for the 2006, 2011 and 2016 censuses:

There appears to be a fairly strong relationship between the two factors at city level.

Sydney and Melbourne have seen the largest mode shift away from private transport, but only Melbourne has also seen declining motor vehicle ownership rates.

Canberra saw only weak growth in motor vehicle ownership between 2011 and 2016, and at the same time there was a shift away from private transport (and a large increase in population weighted density).

Perth and Brisbane saw increasing private transport mode share and increasing motor vehicle ownership between 2011 and 2016.

Here’s a more detailed look at the relationship over time for Melbourne at SA2 geography:

The outliers on the upper left are generally less-wealthy middle-outer suburban areas (lower motor vehicle ownership but high private mode share), while the outliers to the lower-right are wealthy inner suburbs where people can afford to own plenty of motor vehicles, but they didn’t use them all to get to work.

In the bottom left of the chart are inner city SA2s with declining private mode share and declining motor vehicle ownership. For motor vehicle ownership rates around 70-80 (motor vehicles per persons aged 18-84), there are many SA2s with private mode shares that declined 2006 to 2016, but not significantly lowering motor vehicle ownership rates. That suggests that just because people own many motor vehicles, they don’t necessarily use them to drive them to work.

Here is the same data for Sydney:

There are many SA2s with motor vehicle ownership rates around 50 to 70 where the private mode shares are dropping faster than motor vehicle ownership. But there are also many areas with high private mode shares and increasing rates of motor vehicle ownership.

How do the other cities compare? Here are all the SA2s for all cities on the same chart, with alternating highlighted cities:

You can see big differences between the cities, but also that Brisbane and Perth have many SA2s with very high private mode share and rapidly increasing motor vehicle ownership (ie moving up and right, although it’s a little difficult to see with so many lines overlapping). Melbourne and Sydney have plenty of SA2s moving down and left – reducing motor vehicle ownership and declining private transport mode share (which may make some planners proud).

Of course there will be a relationship between motor vehicle ownership and where people choose to live and work. People working in the central city may prefer to live near train stations so they can avoid driving in congested traffic to expensive car parks. People who prefer not to drive might choose to live close to work and/or a frequent public transport line. People who are happy to drive to work in the suburbs might avoid higher priced real estate near train stations or the inner city.

As an aside, we can compare total household motor vehicles to the number of people driving to work, to estimate the proportion of household motor vehicles actually used in the journey to work. Here is Melbourne:

SA2s with a lower estimate are generally nearer the CBD, are wealthier areas, have reasonable public transport accessibility, and/or might be areas with a higher proportion of people not in the workforce (for whatever reason). The areas where the highest proportion of motor vehicles are required for the journey to work are relatively new outer suburbs on the fringe (perhaps suggesting forced car ownership), where adult workforce participation is probably high and public transport accessibility is lower.

The proportion of cars used in the journey to work declined on average in many parts of Melbourne. Given that motor vehicle ownership rates in Melbourne barely changed between 2011 and 2016, this probably represents people mode shifting, rather than people acquiring more motor vehicles even though they don’t need them to drive to work.

Jobs within walking distance of home

It stands to reason that people would be more likely to walk to work if there were more work opportunities within walking distance of their home.

For every SA1 I’ve measured how many jobs are approximately within 1 km as a notional walking catchment (measured as the sum of jobs in destination zones whose centroid are within 1 km of the centroid of each home SA1, so it is not perfect). Here’s the relationship with walking mode share:

(there are a lot of dots overlapping in the bottom left-corner and Adelaide dots have been drawn on top so try not to get thrown by that).

You don’t have to have a lot of nearby jobs to get a higher walking mode share, but if you do, you are very likely to get a high walking more share. The exceptions (many jobs, but low walking share) include many parts of Parramatta (Sydney), and areas separated from nearby jobs by water bodies or other topographical barriers (eg Kangaroo Point in Brisbane).

Workplace distance from the city centre

As was seen in a previous post, workplaces closer to city centres had much lower private transport mode shares, which is unsurprising as these are locations with generally the best public transport accessibility, high land values that can lead to higher car parking prices (which impact commuters who pay them), and often higher traffic congestion.

Here is a chart showing private transport mode share by workplace distance from the city centre. I’ve used faded lines to show 2011 and 2006 results (2006 only available for Sydney and Melbourne).

Here’s a chart that shows the mode shifts between 2011 and 2016:

Inner Melbourne had the biggest mode shifts away from private transport (particularly in Docklands that falls into the 1-2 km range, which saw significant employment and tram service growth), but Sydney had more consistent mode shifts across most distances from the city centre. Adelaide and Canberra saw mode shifts away from private transport in the inner city but towards private transport further out.

Brisbane and Perth saw – on average – a mode shift to private transport across almost all distances from the city centre, with the highest mode shift to private transport in Brisbane actually for the CBD itself(!).

Home distance from the city centre

There’s unquestionably a relationship here too, and it’s probably mostly driven by public transport service levels being roughly proportional to distance from the CBD, but also the proportion of the population who work in the CBD being much higher for homes nearer the CBD.

Sydney had the lowest average private transport mode share at all distances up to 20 km from the CBD, followed by Melbourne and Brisbane, in line with overall mode shares.

The trends over time are also interesting. Brisbane saw mode shifts towards private transport at all distances more than 2 km from the city centre between 2011 and 2016. However there were not significant shifts for Perth outside the city centre – that is: modes shares by geography didn’t change very much. The mode shift away from public transport in Perth is best explained by the shift in jobs balance away from the city centre.

Here are public transport mode shares by home distance from city centres:

In most cities, public transport mode share peaked at a few kilometres from the city (as active transport has a higher mode in the central city).

Here are public transport mode shifts by distance from the city centre between 2011 and 2016:

The significant shift in central Melbourne is likely to be largely explained by the Free Tram Zone introduced in 2015. Outside of the city centre the mode shifts are surprisingly uniform across each city.

Here’s the same chart for 2006-2011, and you can clearly see the impact of the opening of the Mandurah railway line in Perth with significant mode shift beyond 30 km:

Curiously there was a massive shift to public transport for CBD residents in Melbourne (and this is before the free tram zone was introduced).

So which factors best explain the patterns in mode shares across cities?

What we’ve clearly seen is that higher public transport mode shares are seen for journeys to work…

  • to higher density workplaces
  • from areas of lower motor vehicle ownership
  • to workplaces closer to train stations
  • from higher density residential areas
  • from areas around train and busway stations
  • to and from areas closer to city centres (except from the central city where walking takes over)
  • from less wealthy areas (while I haven’t tested this directly, wealth seems to explain a lot of the outliers in the scatter plots)

I’ve listed these roughly in order of the strength of the relationships seen in the data, but I haven’t put them all in a regression model (yet, sorry).

Of course most of these factors are inter-related, so we cannot isolate causation factors. I’m going to run through many of them, because they are often interesting: (note I have sometimes used log scales)

Population density is roughly related to distance from the city centre:

Motor vehicle ownership has a strong relationship with population density (see this post for more analysis):

Motor vehicle ownership has a weaker relationships with distance from the city centre:

Motor vehicle ownership is related to home distance from train stations, except in Adelaide:

Technical note: For this chart (and some below) I’ve calculated average quantities for the variable on the Y axis, as there would otherwise there are too many data points on the chart and it becomes very hard to see the relationship (I would need to show all SA1s because SA2s are too large in terms of distance from stations). The downside is that these style of charts don’t indicate the strength of relationships.

Population weighted density is related to distance from train stations, especially in Melbourne and Sydney, but not at all in Adelaide:

There is a relationship – although not strong – between weighted job density and distance from city centres:

There’s some relationship between average weighted jobs density and distance from train stations, except in Adelaide:

Here’s the same data, but as a scatter plot with a point for each destination zone, scaled by the number of journeys to each destination zone, and a linear Y-axis:

Technical note: the X-axis appears green mostly because Adelaide data points are drawn on top of other cities, but those data points aren’t of much interest.

In most cities, destination zones with high jobs density (over 700 jobs/ha) were only found within 1 km of a train station – with the notable major exception of Adelaide (again!).

(If you are curious, the large Melbourne zone at 1.4 km from a train station and 659 jobs/ha is the Parkville hospital precinct – where incidentally a train station is currently under construction).

There is a relationship between motor vehicle ownership and proximity to busway stations, but it varies between cities:

But there’s not much relationship between population density and proximity to busway stations (except in the immediate vicinity of busway stations in Brisbane):

Final remarks: there’s something about Adelaide’s train network

A few key observations come through clearly about the catchments around Adelaide’s train stations:

  • In aggregate they do not have higher population density, unlike other cities.
  • In aggregate they do not have particularly high public transport mode shares, unlike other cities.
  • In aggregate they do not have lower rates of motor vehicle ownership, unlike other cities.
  • They do not include the area of highest job density in the CBD (a longer walk or transfer to tram or bus is required), unlike other cities.

Few cities have spare land corridors available for new at-grade rapid public transport lines, and so transport planners generally want to make maximum use of the ones they’ve got, before opting for expensive and/or disruptive tunnelling or viaducts solutions. It looks like Adelaide’s rail corridors are not reaching their people-moving potential.

By contrast, Adelaide’s “O-Bahn” busway does go into the job dense heart of the CBD and the busway station catchments do have higher public transport mode share and lower motor vehicle ownership. However they do not have higher population density, possibly because the stations are surrounded by car parks, green space, and one large shopping centre (Tea Tree Plaza).

Mode shares, population densities, and motor vehicle ownership rates would quite probably change significantly if Adelaide could address the fourth issue by building a train station near the centre of the CBD.

In fact, Auckland had a very similar problem with its previous main city station being located away from the centre of the CBD. They fixed that with Britomart station opening in 2003 and train patronage soon rose quite dramatically (off a very low base, and also helped by service upgrades, subsequent electrification, and many other investments).

Should Adelaide do the same? It would certainly not be cheap and you would have to weigh up the costs and benefits.


What might explain journey to work mode shifts in Australia’s largest cities?

Mon 28 May, 2018

[Updated 29 June 2018 with further analysis of parking levies and their impact]

Between 2011 and 2016, journey to work public transport mode shares went up significantly in Melbourne and Sydney but dropped significantly in Perth and Brisbane. Private transport mode shifts did the opposite. Can this be explained by the changing distribution of jobs within cities, or other factors such as changes in transport costs?

In a recent post focused on Brisbane I found that stronger growth in suburban jobs relative to central city jobs could explain around half of the city’s mode shift towards private transport, with other factors (mostly the changes in relative attractiveness of modes) explaining the rest.

So how is job distribution changing in other Australian cities? How much of the mode shifts can be attributed to changing job distribution and how much could be attributed to other factors like changes in transport costs, or increasing employment density?

(for details about how I define public, private and active transport, see the appendix in this post)

How is job distribution changing in Australian cities?

Here’s a view of the changing distribution of all jobs within each city by workplaces distance from the city centre.

(Unfortunately I only have 2006 data for Sydney and Melbourne)

The changes are relatively subtle, but if look at how the bands shift between years, you’ll see increasing centralisation in Sydney but a decentralisation in all other cities between 2011 and 2016.

The strongest decentralisation was in Brisbane and Perth, which also showed the biggest increases in private transport mode share.

However Melbourne saw both a slight decentralisation of jobs and a mode shift away from private transport between 2011 and 2016.

So we need to dig deeper to find out what’s going on here.

How does private mode share vary by distance from the city centre?

The following chart shows private transport mode shares by distance from the city centre for the last two or three censuses for each city. The darkest line for each city is for 2016, with lighter lines being previous years (I only have 2006 data for Melbourne and Sydney).

There’s a clear pattern in all cities that private mode shares are lower in areas closer to the city centre, with Sydney the lowest, followed by Melbourne, Brisbane, Perth, Adelaide, and Canberra (which is also the order of their population size).

Notably Sydney private mode share averaged lower than 90% out as far as 24km from the city centre, whereas Adelaide sees 90% mode shares as close as 2km from the city centre.

If you look carefully you can see that Brisbane increased private transport mode shares in the central city between 2011 and 2016, while private mode shares dropped or were stable in all other cities at most distances.

You can also see that the central city mode shifts away from private transport were largest in Melbourne, something I’ll come back to.

Here’s the same again but for public transport:

Sydney and Melbourne saw mode shifts to public transport at most distances from the city centre, unlike all other cities.

What mode shift can we attribute to changing job distributions?

A city’s mode share (measured by place of work) will be fundamentally impacted by two types of changes between censuses:

  • Changes in the volume of jobs in each SA2 – because different SA2s generally have different mode shares due to factors like proximity to the city centre and public transport access. If there is stronger jobs growth in areas that already had lower private mode shares, you would get a mode shift away from private transport, all other things being equal.
  • Changes in the mode share in each SA2 – because different modes became more or less attractive for commuters between census years. This might be due to changes in public transport service quality, transport infrastructure provision, and relative changes in the cost of public transport, private motoring, and commuter parking. It could also be influenced by broader demographic changes.

For each city I have calculated what the city-level private transport mode share would have been in 2016, had mode shares in each workplace SA2 remained exactly the same as 2011, but the job volumes in each SA2s had still changed. The city level mode shift due to SA2 volume changes is then the difference between this hypothetical 2016 mode share and the 2011 mode share. The remainder of the city-level mode shift between 2011 and 2016 results can then be attributed to mode shifts at the SA2 level.

Here’s a chart showing the mode shift impact of both volume changes at the SA2 level, and mode shifts at the SA2 level:

As we noted above, Sydney saw a slight trend to centralisation of jobs between 2011 and 2016, and it had the largest volume change attributed reduction in private mode share (-0.4%). However other factors were responsible for a further 2.5% of the mode shift away from private transport.

The story is similar in Melbourne but to a smaller magnitude in both aspects. Both of these cities also saw increasing inner city job density – which matters – and I’ll back come to that in a moment.

In Brisbane you can see that the total mode shift towards private transport was roughly equally attributable to SA2 volume changes and SA2 mode shifts (as I discussed in my earlier post).

Perth had an overall 1.3% mode shift to private transport, and the majority of this was due to significant jobs growth in the suburbs compared to the CBD (in fact, the SA2 with the largest jobs growth was Murdoch in the southern suburbs). But there were also other factors that led to a mode shift to private transport.

In Canberra – Queanbeyan, volume changes by themselves would have seen a mode shift to private transport, but other factors were larger and led to an overall mode shift away from private transport (although it is actually complicated because the 2011 census day was in a federal parliamentary sitting week, while 2016 was not).

Nothing much changed in Adelaide.

Next I’m going to explore what could be behind the mode shifts at SA2 level, in terms of job density and real transport costs.

Can increases in workplace density impact mode shares?

As discussed in my Brisbane analysis, if the relative attractiveness of modes hadn’t changed, you might still expect a mode shift to public transport in high density employment areas with increasing jobs numbers because you would expect the cost of parking provision to increase with increasing land use density (i.e. more competition for space).

Indeed, in Sydney and Melbourne a number of inner city SA2s became significantly more job dense between 2011 and 2016, and also saw mode shifts away from private transport:

(inspect this data in Tableau)

A similar thing happened in Civic (the main centre of Canberra).

But Adelaide and Perth saw both declining job density and declining private transport mode share, which suggests something else is at play.

Job density didn’t really go down in Brisbane – see my Brisbane post for an explanation (basically, ABS redrew the SA2 boundary along the Brisbane River).

Could changes in the real cost of transport be causing mode shifts?

The following chart shows the real change in urban transport fares in Australian cities since 2000, as measured by the ABS as part of the Consumer Price Index series (which unfortunately includes public transport, taxis, and “ride share” but is for a representative sample of journeys so hopefully mostly dominated by public transport fares):

The lines are somewhat saw-toothed because public transport fares generally only rise once a year, and become better value in real terms over the course of the following 12 months.

Many cities have seen above-CPI public transport fare increases at various times, most notably Brisbane in 2010-2014. Melbourne has had above CPI fare increases, but also reduced zone 1+2 fares in 2015 which lead to a reduction on the ABS measure (the fare reduction only really applied to people travelling across zones 1 and 2 – which roughly summarised means travel between the outer and inner suburbs). Brisbane fares peaked in 2014, which was followed by a freeze and then a large reduction in 2017.

By contrast, here is the (negative) growth in the cost of “private motoring” (which includes vehicles, fuel and maintenance):

Private motoring costs have declined in real terms since 2000, although they increased a little during the second half of 2017.

The next chart shows the change in ratio between the two costs. Urban transport fares have become less competitive than private motoring over time in all cities:

But if we are looking at changes between census figures, we should probably also look at cost changes between the times of each census. Here’s how prices changed in real terms between the September quarters of 2011 and 2016 (which cover the August census dates):

The real cost of private motoring dropped in all cities, but so did the real “average” cost of urban transport fares in Sydney and Melbourne (the Melbourne drop being mostly around large fare reductions for travel across zones 1 and 2).

The biggest differences in cost changes were in Brisbane and Perth (around 18%), which I think will go a fair way to explaining why these cities had the biggest shifts to private transport attributable to SA2 mode shifts.

Brisbane saw a rapid increase in public transport fares between 2011 and 2014 which is likely to have changed many commuting habits, but those habits may or may not have changed back when fares were subsequently reduced (e.g. if someone bought a car due to fare increases, they may not have subsequently sold their car when fares reduced). Perth certainly had less mode shift at the SA2 level compared to Brisbane, which might support this hypothesis.

What about changes in car parking costs?

The ABS CPI’s private motoring cost index does not include car parking costs – which would be difficult as they vary considerably with geography.

However we do know about central city car parking levies that governments charge in a bid to reduce road congestion and fund inner city transport initiatives. Sydney, Melbourne, and Perth apply levies to central city non-residential car parking spaces, and ultimately these levies will need to be recovered through parking prices.

I’ve calculated these levies in 2017 dollars (adjusting for inflation as measured in June quarters), and here’s how they have changed since 2000:

Melbourne increased its central city parking levy by 40% per space in 2014 (category 1), and created a new lower-priced levy area in some neighbouring areas to the north and south in 2015 (category 2, see map). This is likely to have contributed to the larger mode shifts away from private transport in the central city area of Melbourne compared to most other cities (particularly considering there were similar changes in average private motoring and urban transport fares in Melbourne between 2011 and 2016).

Sydney’s category 1 fee applies in the Sydney CBD area, Milsons Points and North Sydney. It was $2390 in 2017, and has only risen with indexation since 2009 (when it was doubled). A lower category 2 levy applies in the business districts centres of Bondi Junction, Chatswood, Parramatta, and St Leonards.

Perth has an annual licence fee per bay which ranged from $1039 to $1169 in 2017.  The Perth fee was increased by around 167% in 2010, and there were also above-inflation increases from 2014. The fee increased 63% in real terms between 2011 and 2016 for “long stay” spaces, and 69% for “tenant” spaces.

I am not aware of any such fees or levies in place in Brisbane or Adelaide (a proposal for Adelaide was voted down).

So how are CBD parking prices changing?

Unfortunately good data is a little hard to find, but this Colliers Car Parking White Paper provides “average daily rates” for CBDs for 2009-2015, and early bird rates for 2015. I expect most commuters would pay early bird rates – which average between 28% and 62% of daily rates depending on the city (quite some variation!). I’ve adjusted the pre-2015 figures for inflation to be in 2015 dollars:

In real terms, “average daily” parking costs have declined in Melbourne, rocketed up in Brisbane and Canberra, and moved less in Sydney and Perth. I don’t know whether these reflect trends in early bird prices. And we don’t know how prices changed between 2015 and the census year of 2016.

So how much are parking levies contributing to parking prices?

I have to make some assumptions (guesstimates) here. Regular weekdays represent about 60% of the days of the year. If we assume say 80% of the levy is recovered from weekday commuter parking (there generally being less demand for parking on weekends), we can calculate the average weekday commuter cost of the levy to be 27% of the Sydney early bird price, 25% of the Melbourne early bird price, and 15% of the Perth early bird price. Certainly not insignificant.

Here’s a summary of the levy and “average daily” price changes and mode shifts in the central city parking levy areas:

Changes 2011 to 2016
Parking levy area or CBD SA2 Levy real increase Average daily real price change (2011 to 2015) Private mode shift New private trips Private share of new trips
Perth 63% -5% -0.8% -60 -3%
Melbourne – category 1 40% -11% -5.3% 3200 5%
Melbourne – category 2 (new) n/a -6.4% 5315 30%
Sydney CBD 0% +1% -2.6% 6204 9%
Brisbane City SA2 n/a +64% +1.7% 3135 68%
Adelaide SA2 n/a -11% -1.5% 2567 35%
Canberra Civic SA2 n/a +71% -3.2% 746 30%

Firstly, “average daily” parking prices don’t seem to be following the changes in parking levies in Perth and Melbourne (category 1 area). Other factors influencing parking prices will include supply (influenced by competition for real estate and planning rules) and demand (influenced by employment density) with the market ultimately determining prices.

Car park operators appear to be absorbing the increased cost of the levy (although we don’t know the trends in early bird prices so we cannot be entirely sure). But that’s not to say that the levy hasn’t had any impact on prices – for example, the price reductions might have been larger if the levies had not increased.

Secondly, price changes do not appear to be correlated with mode shifts as you might expect (except Canberra). Brisbane prices increased dramatically, but so did private mode share! Price reductions in Perth, Adelaide, and Melbourne did not result in increased private transport shares.

Maybe other factors are driving mode shift away from private transport in those cities. Maybe early bird prices are trending differently to “average daily” prices. Maybe increased traffic congestion persuaded people to shift modes. Maybe there were significant price changes between 2015 and 2016. Maybe most existing public transport users were not aware of reductions in parking prices.

I don’t know what happened to parking prices in the new category 2 areas of Melbourne but there was a large mode shift away from private transport (-6.4%), and they may well be linked. Indeed, Infrastructure Victoria has recently recommended the category 2 area be expanded to include the inner-eastern suburbs of Richmond, South Yarra, Windsor and Prahran. And the Grattan Institute has recommended increasing the levy to match Sydney’s rates.

Curiously, when I look at City of Melbourne Census of Land Use and Employment (CLUE) data, the category 1 area (approximated with CLUE areas) had an increase of only around 367 non-residential parking bays between 2011-12 and 2015-16 (a four year period), a lot less than the additional 3200 private trips, which might suggest increased average occupancy.

Also, it is likely that a significant portion of people who drive to city centres are not paying for their parking costs (eg employer provided car parking). Employers may simply be absorbing price increases.

For more interesting discussion and research about car parking in the City of Melbourne, see a recent discussion paper and background report prepared by Dr Elizabeth Taylor.

Did changes in population distribution impact mode shares?

While this post has been focused on changes by workplace location, it is possible to separate the overall mode shifts into the two components by home location. Here are the results:

In Sydney, Melbourne, and Canberra, stronger population growth in areas that already had low private mode shares in 2011 made a small contribution to overall mode shifts away from private transport. These cities have all seen densifying population in inner city areas better served by public transport.

The distribution of population growth in Perth and Brisbane had a small effect in the opposite direction.

And again, nothing much changed in Adelaide.

What about active transport?

Cycling-only mode share was pretty stable in most cities (except Canberra up 0.2%). Walking-only mode share declined in Sydney (-0.2%), Brisbane (-0.3%), Adelaide (-0.4%), Perth (-0.3%) but was steady in Melbourne and increased in Canberra (+0.2%). So Canberra has the biggest shift to active transport.

Can you summarise all that?

If your head is spinning with all that information, here’s a summary of what some of the major factors could be in each city between 2011 and 2016. I say “could be” because I’ve not looked at every possible factor influencing mode share.

Sydney: the 2.9% mode shift away from private transport was probably mostly to do with increasing job density in employment centres (more on that in my next post), but was also partly by a shift to more centralised jobs, and increasing population density in places well served by public transport.

Melbourne: The 1.8% mode shift away from private transport probably had a fair bit to do with increasing central city job density, the significant spatial expansion of the central city parking levy area and rates (although we don’t know if early bird prices also rose), a reduction in some public transport fares, and strong population growth in areas well served by public transport.

Brisbane: The 1.9% mode shift towards private transport appears roughly half about the decentralisation of jobs, and half the reduced attractiveness of public transport – particularly following significant fare rises between 2010 and 2014, and possibly/arguably declines in service quality.

Perth: The 1.2% mode shift towards private transport was probably mostly due to a decentralisation of jobs, and partly due to public transport becoming less cost competitive with private transport (despite an increase in the central city parking levy). Urban sprawl is probably also a factor.

Adelaide: The 0.2% mode shift to private transport is probably mostly due to public transport becoming less cost competitive with private transport. Changes in job and population distribution, and employment density do not appear to have had a significant impact.

Canberra:  The 1.0% mode shift away from private transport was probably the result of competing forces of higher jobs growth in car-dominated workplace areas with increasing job density in dense employment centres, increasing central city parking prices, higher population growth in areas better served by public transport (and possibly cycling facilities), and also the fact census 2016 was not a parliamentary sitting week while 2011 was (so really, it’s hard to be too sure!).

You might want to add your own views about changes in the service quality of public transport and cycling infrastructure in each city. I also haven’t looked at the impact of major new public transport infrastructure and service initiatives (such as the opening of new train stations), which we know does impact mode shares at a local level (maybe that’s for a future post).

I hope you found this interesting. My next post will look at suburban employment centres, and their role in changing mode shares in cities.