Are Australian cities becoming denser?

Tue 5 November, 2013

[Updated April 2017 with 2015-16 population estimates. First published November 2013]

While Australian cities have been growing outwards with new suburbia, they have also been getting denser in established areas, and the new areas on the fringe are often more dense than growth areas used to be (see last post). So what’s the net effect – are Australian cities getting more or less dense?

This post also explores measures of population-weighted density for Australian cities large and small over time. It also tries to resolve some of the issues in the calculation methodology by using square kilometre geometry, looks at longer term trends for Australian cities, and then compares multiple density measures for Melbourne over time.

Measuring density

Under the traditional measure of density, you’d simply divide the population of a city by the metropolitan area’s area (in hectares). As the boundary of the metropolitan areas seldom change, the average density would simply increase in line with population with this measure. But that density value would also be way below the density at which the average resident lives because of the inclusion of vast swaths of unpopulated land within “metropolitan areas”, and so be not very meaningful.

Enter population-weighted density (which I’ve looked at previously here and here). Population-weighted density takes a weighted average of the density of all parcels of land that make up a city, with each parcel weighted by its population. One way to think about it is the residential density in which the “average resident” lives.

So the large low-density parcels of rural land outside the urbanised area but inside the “metropolitan area” count very little in the weighted average because of their small population relative to the urbanised areas. This means population-weighted density goes a long way to overcoming having to worry about the boundaries of the “urban area” of a city. Indeed, in a previous post I found that removing low density parcels of land had very little impact on calculations of population-weighted density for Australian cities. However, the size of the parcels of land used in a population-weighted density calculation will have an impact, as we will see shortly.

Calculations of population-weighted density can answer the question about whether the “average density” of a city has been increasing or decreasing. But as we will see below, using geographic regions put together by statisticians based on historical boundaries is not always a fair way to compare different cities.

Population-weighted density of Australian cities over time

Firstly, here is a look at population-weighted density of the five largest Australian cities (as defined by ABS Significant Urban Areas), measured at SA2 level (the smallest geography for which there exists a good consistent set of time-series estimates). SA2s roughly equate to suburbs.

According to this data, most cities bottomed out in density in the mid 1990s. Sydney, Melbourne and Brisbane have shown the fastest rates of densification in the last three years.

What about smaller Australian cities? (120,000+ residents in 2014):

Darwin comes out as the third most dense city in Australia on this measure, with Brisbane rising quickly in recent years into fourth place. Most cities have shown densification in recent times, with the main exception being Townsville. On an SA2 level, population weighted density in Perth hardly rose at all in 2015-16 (a year when 92% of population growth was in the outer suburbs)

However, we need to sanity test these values. Old-school suburban areas of Australian cities typically have a density of around 15 persons per hectare, so the values for Geelong, Newcastle, Darwin, Townsville, and Hobart all seem a bit too low for anyone who has visited them. I’d suggest the results may well be an artefact of the arbitrary geographic boundaries used – and this effect would be greater for smaller cities because they would have more SA2s on the interface between urban and rural areas (indeed all of those cities are less than 210,000 in population).

For reference, here are the June 2014 populations of all the above cities:

Australian cities population 2014

The following map shows Hobart, with meshblock boundaries in black (very small blocks indicate urban areas), SA2s in pink, and the Significant Urban Area (SUA) boundary in green.  You can see that many of the SA2s within the Hobart SUA have pockets of dense urban settlement, together with large areas that are non-urban – ie SA2s on the urban/rural interface. The density of these pockets will be washed out because of the size of the SA2s.

Hobart SUA image

 

 

Reducing the impact of arbitrary geographic boundaries

As we saw above, the population-weighted density results for smaller cities were very low, and probably not reflective of the actual typical densities, which might be caused by arbitrary geographic boundaries.

Thankfully ABS have followed Europe and released of a square kilometre grid density for Australia which ensures that geographic zones are all the same size. While it is still somewhat arbitrary where exactly this grid falls on any given city, it is arguably less arbitrary than geographic zones that follow traditional notions of area boundaries.

Using that data, I’ve been able to calculate population weighted density for the larger cities of Australia. The following chart shows those values compared to values calculated on SA2 geography:

pop weighted density 2011 grid and SA2 australian cities

You’ll see that the five smaller cities (Newcastle, Hobart, Geelong, Townsville and Cairns) that had very low results at SA2 level get more realistic values on the kilometre grid.

You’ll notice that most cities (except big Melbourne and Sydney) are in the 15 to 18 persons per hectare range, which is around typical Australian suburban density.

While the Hobart figure is higher using the grid geography, it’s still quite low (indeed the lowest of all the cities). You’ll notice on the map above that urban Hobart hugs the quite wide and windy Derwent River, and as such a larger portion of Hobart’s grid squares are likely to contain both urban and water portions – with the water portions washing out the density (pardon the pun!). While most other cities also have some coastline, much more of Hobart’s urban settlement is near to a coastline.

But stepping back, every city has urban/rural and/or urban/water boundaries and the boundary has to be drawn somewhere. So smaller cities are always going to have a higher proportion of their land parcels being on the interface – and this is even more the case if you are using larger parcel sizes. There is also the issue of what “satellite” urban settlements to include within a city which ultimately becomes arbitrary at some point. Perhaps there is some way of adjusting for this interface effect depending on the size of the city, but I’m not going to attempt to resolve it in this post.

International comparisons of population-weighted density

See another post for some international comparisons using square km grids.

Changes in density of larger Australian cities since 1981

We can also calculate population-weighted density back to 1981 using the larger SA3 geography. An SA3 is roughly similar to a local government area (in Melbourne at least), so getting quite large and including more non-urban land. Also, as Significant Urban Areas are defined only at the SA2 level, I need to resort to Greater Capital City Statistical Areas for the next chart:

This shows that most cities were getting less dense in the 1980s (Melbourne quite dramatically), with the notable exception of Perth. I expect these trends could be related to changes in housing/planning policy over time. This calculation has Adelaide ahead of the other smaller cities – which is different ordering to the SA2 calculations above.

On the SA3 level, Perth declined in population-weighted density in 2015-16.

When measured at SA2 level, the four smaller cities had almost the same density in 2011, but at SA3 level, there is more separating them. My guess is that the arbitrary nature of geographic boundaries is having an impact here. Also, the share of SA3s in a city that are on the urban/rural interface is likely to be higher, which again will have more impact for smaller cities. Indeed the trend for the ACT at SA3 level is very different to Canberra at SA2 level.

Melbourne’s population-weighted density over time

I’ve taken a more detailed look at my home city Melbourne, using all available ABS population figures for the geographic units ranging from mesh blocks to SA3s inside “Greater Melbourne” (as defined in 2011) or inside the Melbourne Significant Urban Area (SUA, where marked), to produce the following chart:

Note: I’ve calculated population-weighted density at the SA2 level for both the Greater Capital City Statistical Area (ie “Greater Melbourne”, which includes Bacchus Marsh, Gisborne and Wallan) and the Melbourne Significant Urban Area (slightly smaller), which yield slightly different values.

All of the time series data suggests 1994 was the turning point in Melbourne where the population-weighted density started increasing (not that 1994 was a particularly momentous year – the population-weighted density increased by a whopping 0.0559 persons per hectare in the year to June 1995 (measured at SA2 level for Greater Melbourne)).

You’ll also note that the density values are very different when measured on different geographic units. That’s because larger units include more of a mix of residential and non-residential land. The highest density values are calculated using mesh blocks (MB), which often separate out even small pockets of non-residential land (eg local parks). Indeed 25% of mesh blocks in Australia had zero population, while only 2% of SA1s had zero population (at the 2011 census). At the other end of the scale, SA3s are roughly the size of local councils and include parklands, employment land, rural land, airports, freeways, etc which dilutes their average density.

In the case of SA2 and SA3 units, the same geographic areas have been used in the data for all years. On the other hand, Census Collector Districts (CD) often changed between each five-yearly census, but I am assuming the guidelines for their creation would not have changed significantly.

Now why is a transport blog so interested in density again? There is a suggested relationship between (potential) public transport efficiency and urban density – ie there will be more potential customers per route kilometre in a denser area. In reality longer distance public transport services are going to be mostly serving the larger urban blob that is a city – and these vehicles need to pass large parklands, industrial areas, water bodies, etc to connect urban origins and destinations. The relevant density measure to consider for such services might best be based on larger geographic areas – eg SA3. Buses are more likely to be serving only urbanised areas, and so are perhaps more dependent on residential density – best calculated on a smaller geographic scale, probably km grid (somewhere between SA1 and SA2).

You may also like


A detailed look at changes in Melbourne residential density 2006-2011

Mon 8 July, 2013

Since my first post looking at 2011 Melbourne residential density, there’s been a heap of new 2011 census data released. This post includes new maps showing Melbourne’s population density in maximum detail, as well as some more calculations of Melbourne’s urban/residential density for the density nerds.

Melbourne’s residential density in extremely high resolution

2011 population figures are now available for mesh blocks – the smallest ABS geographic unit. This allows a fine-grained look at 2011 residential density, and comparisons with 2006 as we now have a time series.

Here’s a very large animated map (4.7MB, 6825 x 4799 pixels) showing residential density at mesh block level for 2006 and 2011. You’ll need to click on it to download and see the animation (I’d suggest a new tab or window). Use your browser to zoom in and scroll around to areas of interest.

Melbourne mesh block density

 

[update 10 July: It has been brought to my attention that some people are unable to view this map because they are restricted to using certain versions of Internet Explorer. If you cannot see the large map above, I have also created a smaller animated map showing only the inner areas of Melbourne]

You can see that new growth areas on the fringe actually have relatively high densities, contrary to conventional wisdom. I also note a relatively high and increasing density in the Springvale/Keysborough/Noble Park area, quite some distance from the CBD. If you look carefully you will also spot infill developments like Waverley Park, Parkville (ex-Commonwealth Games village), Gresswell Hill in Macleod, Docklands, Maidstone, Edgewater estate in Maribyrnong, along St Kilda Road, Waterways, and no doubt many more.

More values for the urban/residential density of Melbourne

Okay, you might want to stop reading here unless you have a deep interest in density calculation methodology.

Along with mesh blocks, the recently released census data provides boundaries for urban centres and localities, which each representing a relatively continuous urban area (including residential and non-residential land). There is an urban centre of “Melbourne” defined, which excludes the satellite urban centres of Pakenham, Melton, Sunbury, Healesville and towns along the Warburton Highway, but includes the major urban regions along the Mornington Peninsula to Portsea and Hastings.

All this new data enables calculation of yet more values of the urban/residential density of Melbourne, adding to my previous list (some of which I have repeated for comparison purposes). The areas covered by each calculation are shown on the map below.

Geography Area 
(km2)
Population Average density 
(pop/ha)
Areas on map below
“Greater Melbourne” Greater Capital City Statistical Area 9990.5 3,999,982 4.0 white + yellow + green
SA1s within Greater Melbourne with population density > 1 person/ha 2211.4 3,903,450 17.7  (not shown exactly, slightly less than yellow + green)
Mesh blocks within Greater Melbourne, with population density > 1 person/ha 1713.1 3,913,215 22.8  yellow + green
Mesh blocks within Greater Melbourne, with population density > 5 person/ha 1348.5 3,824,999 28.4 green
Melbourne urban centre 2543.2 3,707,530 14.6 all within blue boundary
Mesh blocks within Melbourne urban centre, with population density > 1 person/ha 1443.8 3,696,316 25.6 yellow + green within blue boundary
Mesh blocks within Melbourne urban centre, with population density > 5 person/ha 1238.3 3,642,685 29.4 green within blue boundary

I note that the Melbourne urban centre is approximately a quarter of the area of “Greater Melbourne”.

Here’s a reference map of Melbourne showing the Greater Capital City Statistical Area, Statistical Division and Urban Centre boundaries of “Melbourne”, together with mesh blocks of above 1 and 5 persons/ha.

Density area scope map mesh blocks2

Finally, for the density nerds who are still reading this post, I have calculated the 2011 population-weighted density of Greater Melbourne using mesh blocks to be 42.8 persons/ha, which is much higher than the population-weighted density using SA1 geography of 31.8 persons/ha. It’s higher because more non-residential land parcels have been excluded from the overall calculation. If I restrict myself to mesh blocks within the Melbourne urban centre, the population-weighted density is only slightly higher at 45.1 persons/ha.

So if you want to compare population-weighted densities of different cities, you’ll need to make sure you are using equivalent geographic units, which I suspect would be very difficult for international comparisons. An attempt at Australian and Canadian city comparisons was made in the comments section of a previous post.

There you go. Next time someone claims to know the urban density of Melbourne, you can now argue with them for hours about whether you agree with their number and how it should be measured.


How did Sydney get to work in 2006?

Fri 26 October, 2012

With the imminent release of 2011 census journey to work data (30 October 2012), I thought it would be worth completing a look at 2006 data for Sydney and other cities. This post will take a more detailed look at Sydney, thanks to the free data provided by ABS and the Bureau of Transport Statistics New South Wales (BTS NSW).

There are five parts to this post:

  1. Mode share by home location
  2. Mode share by work location
  3. Mode share for Sydney CBD workers
  4. An employment density map of Sydney
  5. The relationship between employment density and mode share

(get ready for 25 charts!)

In future posts I hope to look at Adelaide, Perth and Brisbane in more detail, and also compare 2006 and 2011 results.

Firstly a few definitions for mode shares:

  • Public transport: Any journey involving any public transport mode (private transport might also have been involved – eg park and ride).
  • Active transport: A journey that only involved only walking and/or cycling.
  • Sustainable transport: Public transport + Active transport (note: this includes private+public journeys, but not private+cycling journeys).

Also, I have included railway lines on the following maps, however the data I have is unfortunately quite old and doesn’t show the CBD area rail network or the airport line (the Epping-Chatswood line was not operational in 2006).

Method of journey to work by home location

Data is readily available on journey to work by home census collection district, however this is by place of usual residence. Ideally mode shares should be measured using place of enumeration (where people actually were on census night), but I haven’t forked out the $750 required to get access to ABS TableBuilder Pro which would provide that data. So the data I’m presenting is not ideal as some people would have been away from home on census morning and their modes of travel will be associated with their usual residence.

But the data still provides a fairly good feel for what happened as most people were probably at their usual residence, and hopefully most people filled out their forms accurately.

Public transport mode share

Sydney is a sea of green on this map (other cities will have the same colour scale, stay tuned!). Public transport use in journey to work was highest in the inner city area and along the train lines. It was lowest in the outer suburbs beyond the rail lines.

Train

There are three large and stark areas of red near the CBD and close to train lines. Most of these areas are served by direct and frequent bus services to the CBD, and while for some it might be quicker to change onto a train, this would probably be more expensive. Also, the area around Castle Hill has very low train mode share, although we will see shortly that of the small number who do commute to the CBD about three-quarters use public transport.

I note that the airport rail line (not drawn on the map) resulted in a high train mode share at Mascot but not at Green Square.

Bus

Bus mode share was high in the suburbs close to the Sydney CBD, but very low in the outer suburbs (with exceptions around Palm Beach in the north, Castle Hill (served by freeway buses), and seemingly random pockets north of Mount Druitt).

Train and bus

The following map shows people who used both train and bus in their journey to work:

I’ve used the same colour scale as other maps, and so most of the city is red indicating very few bus-train transfers. The curious exception is around Bondi Beach/Bronte. This is probably all to do with the special Link Tickets that allow bus and train travel on the one ticket in this area only. They are designed for people visiting these areas, but they seem to be very popular with locals travelling to work.

I do wonder what would happen if there were valuable integrated tickets for more places (perhaps we’ll see some differences for 2011 thanks to MyZone).

Ferry

I’ve zoomed into the harbour for this map, and included the ferry wharves (some receiving a much more frequent peak period service than others).

You can see high mode shares on the north shore, to the inner east, and around Manly (wharves which probably have fairly direct services to the CBD). This includes some areas a fair walk from the ferry terminals – with some people probably using connecting buses. In fact, here is a map showing bus and ferry commuters mostly on the north shore (note different colour scale):

Public and Private transport combined

The following map shows the percentage of people who used public transport as well as car, motorcycle and/or truck to get to work (again using a different colour scale):

Use of both public and private modes is most common in the northern suburbs around Hornsby (areas away from the train line), around Macquarie Park (now served by rail), north of Blacktown (now serviced by bus rapid transit), and west of Sutherland.

Cycling

The following map also uses the different scale, and I have zoomed into the areas with significant bicycle mode share.

The cycling mode share peaks at 11% from a pocket of Enmore, and seems to be the domain of the inner southern suburbs.

Active transport (only)

The following map shows people who only used walking and/or cycling to get to work:

You can see the walking/cycling hot spots are around the CBD, North Sydney, Parramatta, Chatswood, Liverpool, Penrith, and around Randwick/UNSW.

Method of journey to work by work location

Here is a map showing the public transport mode share of journeys to travel zones in Sydney in 2006 (where 200 or more journeys were made):

It’s not just the Sydney CBD that had reasonably high public transport mode share. Public transport mode share peaked in the centre of the following regional hubs:

  • North Sydney 53%
  • Bondi Junction: 41%
  • Parramatta: 38%
  • Chatswood: 35%
  • St Leonards: 34%

(these are the highest value recorded by any travel zone in each centre).

By contrast, analysis of destination mode share for Melbourne showed all major suburban centres to have well less than 15% public transport mode share (most less than 10%).

Public transport mode share was also quite clearly higher along the train lines – particularly in the middle and outer suburbs.

Here are enlargements of inner Sydney and the Sydney CBD area:

 

Here’s a map showing active transport mode share for greater Sydney workplace destinations:

Active transport was most commonly used to inner city areas including Newtown, Camperdown, Bondi Beach, Randwick, Paddington and Potts Point.  However it was low in the Sydney CBD. The Holsworthy Military Camp as a large green area in the south with high active transport mode share – probably because the military staff live on site. People more familiar with Sydney might be able to comment further.

Here is sustainable transport mode share (public transport and active transport combined, everything else being private motorised transport). You can see that private transport was by far the dominant for western Sydney jobs.

Journeys to work in the Sydney CBD

Here’s a map showing the public transport mode share by home location of journeys to work in the Sydney CBD (defined as the Sydney – inner SLA, the only red SLA on the map):

Public transport had a mode share around 70-80% for large areas of Sydney (in contrast to Melbourne where 60-70% was more common). However there was a much lower share from the CBD itself and areas adjacent.

Were they walking or cycling instead?

Well, yes for the City of Sydney areas, but not for Woollahra to the east. On the following sustainable transport mode share map, you can see that around 35% of workers from Woollahra commuted to the CBD by private transport (note I have used a different scale for this map):

Sustainable mode share is highest from the western and south-western suburbs, whereas many people chose to drive from the northern suburbs, the southern coastal areas, and even the inner eastern suburbs.

But what proportion of the working population commuted to the CBD?

Compared to the Melbourne CBD, the Sydney CBD seems to have a stronger role, even though Sydney has major employment centres outside the central CBD.

For anyone interested, here are similar maps for North Sydney and Parramatta as work destinations:

Sydney’s employment density

The BTS data also allows the construction of an employment density map. I’ve drawn this map based on people who travelled to each destination zone on census day.

And a zoom in on the inner city:

Employment density and mode share

Finally. here is a look at the relationship between employment density and public, active and private transport mode share (by workplace zone).

I must stress that these results will strongly reflect the design of public transport – which is heavily geared towards places with high employment density (such as the Sydney CBD) as that is where public transport can generally complete strongest with private transport (the cost of parking and traffic congestion etc). By increasing employment density in any parcel of land you won’t automatically get high public transport mode share – you have to provide high quality public transport to that destination first!

No surprises there!

Was that what you expected? Active transport actually had the highest mode share in areas with the lower employment densities. These are likely to be mixed residential/employment areas where employees can live close by, military camps, and farms.

Finally, it will be little surprise that the lower employment densities had the highest private transport mode shares. These areas are likely to have ample room for free employee parking, and public transport is likely to struggle to efficiently deliver a small number of employees over a large area.


Visualising the changing density of Australian cities

Mon 1 October, 2012

Following on from my last post on Melbourne density, I thought it would be worth creating animations of the change in population density in other large Australian cities.

Below are animated maps showing density using estimated annual population on the ABS Statistical Area Level 2 (SA2) geography for the period 1991 to 2011. You’ll need to click on them to see the animation (and you may have to wait a little if you have a slow connection).

I’ve used SA2 geography because it is the smallest geography for which I can get good time series data. Please note that some SA2s with substantial residential populations will still show up with low average density because they contain large parks and/or industrial areas, or are on the urban fringe and so only partially populated (the non-urban areas bringing down the average density).

Sydney

You can see the growth out to the north-west and south-west, the rapid population growth in the CBD and to the south of the CBD, and general densification of the inner suburbs.

Perth

Perth is a little less dramatic, but you can see strong growth to the far north in the late 2000s, populating of the CBD area, and increasing density in the inner northern suburbs. Many of the middle suburbs show very little change. A lot of Perth’s growth areas don’t seem to show up, probably due to low average densities of fringe SA2s that include non-urban areas.

Brisbane

You can see rapid population growth all over Brisbane, particularly in the CBD are inner suburbs.

Melbourne

In case you missed my last post, here is the map for Melbourne.

I had a bit of a look at Adelaide, but the changes between 1991 and 2011 were not very pronounced due to slow population growth. The process of creating these maps is fairly labour intensive so sorry Adelaide, no map for you (unless I get lots of requests).

I hope this is of interest.


A first look at 2011 Melbourne residential density, and how it has changed

Fri 21 September, 2012

With the gradual release of 2011 census data, I thought it would be worth looking at some transport related themes. I’ll start with residential density (for my look at 2006 density, see an earlier post). This post looks at 2011 density, and how density has changed over the years.

The big issue with residential density is how you measure it. In showing it graphically, I prefer to use the smallest available geographic areas, as that can remove tracts of land that are not used for residential purposes (such as parks, creeks, wide road reservations etc).

At the time of posting, 2011 census population data was only available at “Statistical Area Level 1” (SA1). In 2013, population figures for the smallest ABS geographic unit – mesh blocks – will be available for a fine grain look at density.

However, land use descriptions for mesh blocks were available at the time of posting. I have used the indicated land use of each block to mask out land where you would not expect people to live – including land that is classed as parkland, industrial, water, or transport.

So the map below shows the residential density of Melbourne for SA1s, after stripping out non-residential land. The densities will be higher than if you simply looked at straight SA1 density, but I think they will be a better representation (although not as good as what can be drawn when 2011 mesh block population figures are available). You’ll want to click on the map to zoom in.

The map doesn’t show areas with less than 5 persons per hectare (otherwise there would be a sea of red in rural areas). Many of the red areas on the urban fringe are larger SA1s which will be fully residential in future but were only partially populated at the time of the census. However some are just low density semi-rural areas.

Note that the older middle and outer eastern suburbs are much less dense than the newer growth areas to Melbourne’s north and north-west.

How has density changed between 2006 and 2011?

I think the most interesting comparison will be between 2006 and 2011 mesh block density maps. We will be able to see in detail where densification has occurred, and it will be particularly interesting to look at activity centres.

The smallest unchanged geography level with time series data available is at Statistical Area Level 2 (SA2) – which generally contain one large suburb or a couple of smaller suburbs. Data is available for all years 1991 to 2011 (estimates for June 30, based on census results).

The following map shows the change in estimated density from 2006 to 2011 (using full SA2 land parcels, including any non-residential land). This could equally be considered density of population growth. Unfortunately urban growth in pockets of larger SA2s are less likely to show up as the impacts are washed across the entire SA2, but it gives some idea.

The map shows several SA2s with reduced population density, mostly outer established suburbs:

  • Mill Park – South -1.4 persons/ha
  • Mill Park – North -0.6 persons/ha
  • Bundoora West -0.5 persons/ha
  • Kings Park -1.5 persons/ha
  • Keilor Downs -0.8 persons/ha
  • Wheelers Hill -0.7 persons/ha
  • Toorak -0.4 persons/ha
  • Hoppers Crossing South -0.9 persons/ha
  • Rowville Central -0.5 persons/ha
  • Clarinda – Oakleigh South -0.5 persons/ha

There are increases in many areas, particularly:

  • the Melbourne CBD and immediate north
  • many of the inner suburbs
  • the outer growth areas, particularly to the west, north and south-east.
  • Ormond – Glen Huntly, up 4.4 persons per hectare (not sure what the story is there!)

How has density changed between 1991 and 2011?

Here is an animation showing how Melbourne’s density has changed between 1991 and 2011. You’ll need to click on this to see the animation and more detail.

Note in particular:

  • The CBD and Southbank area going from very sparse to very dense population.
  • The significant densification of Port Melbourne.
  • The significant densification of the inner northern suburbs, particularly in the late 2000s.
  • Some large SA2s in the growth areas don’t show up as becoming more dense as they are very large parcels of land with urbanisation only occurring in a small section. This is especially the case for Wyndham and Whittlesea.

So what was Melbourne’s “urban” density in 2011?

That all depends how you define “urban” Melbourne! The table below shows some calculations based on different criteria for including land. The more restrictive criteria will give an answer that is more of a “residential” than “urban” density.

The different geographies are confusing, so I have produced a map below to try to help.

When more census data is available I will aim to update this list (eg to include density of the Melbourne urban locality).

Geography Area 
(km2)
Population Density 
(pop/ha)
Areas on map
“Greater Melbourne” Greater Capital City Statistical Area 9990.5 3,999,982 4.0 white + yellow + green + red
SA1s, within Greater Melbourne, with population density >= 1 person/ha 2211.4 3,903,450 17.7 yellow + green + red
SA1s less non-residential land, within Greater Melbourne, with population density >= 1 person/ha 2295.2* 3,906,680 17.0 yellow + green
SA1s less non-residential land, within Melbourne Statistical Division, with population density > 1 person/ha 2199.7 3,862,387 17.6 yellow + green within purple boundary
SA1s less non-residential land, within Greater Melbourne, with population density >= 5 person/ha 1740.1 3,787,610 21.8 green

*This area is actually larger than the row above, because more SA1s meet the criteria. Confused? It’s because I’ve cut out the non-residential land from each SA1, which increases the average density of what remains meaning more SA1s meet the criteria. The residential land area of the extra SA1s was slightly more than the non-residential land that was cut out. On the map below there are some yellow and green areas that do not have red “underneath”. The red areas you see on the map below are non-residential land in SA1s.

I’ve calculated the average density of “Greater Melbourne” in the first row for completeness, but this is a bit meaningless as the vast majority of land in “Greater Melbourne” is non-urban land (the white area in the map below).

Here is a map showing the various land areas used in the calculations above (note green and yellow areas overlay most red areas):

I’ll aim to post more about 2011 density when ABS release more census data (including population figures for mesh blocks and ‘urban centres and localities’)


What does Melbourne’s urban density look like? (2006)

Sat 2 April, 2011

Transport planners love to talk about urban density, but what does Melbourne’s urban density actually look like? Google for a Melbourne urban density map and you won’t find much.

The ABS publication Melbourne.. A Social Atlas has a density map (see pages 12-13) at the Census Collection District (CCD) level, but only has five colour graduations so subtleties are quickly lost.

So I’ve decided to draw one myself.

Arguably the best source of data for housing density is the ABS’s experimental mesh blocks, which are smaller than Census Collection Districts (CCD). Mesh blocks are designed to have more uniform land use, which gets around the problem of a CCD which might contain a mix of residential, parkland and commercial land use showing up as low density. But I’ll come back to this.

So here is a 2006 population density map of Melbourne at the mesh block level:

(I’m using people per square km, which is 100 times larger than people per hectare if you need to convert).

You’ll need to click to zoom in, and you might want to then zoom in again with your favourite image viewer to see the detail.

Some observations:

  • Many areas on the very fringe show as low density, but this might be because that area was under development at the time of the census, and only some people had moved in.
  • Everyone talks about low density sprawl on the fringe, but even back in 2006 there was evidence of higher density development in the outer suburbs. Have a look at the Craigieburn area in the north or around Narre Warren and you will see many patches of green. New blocks on the urban fringe are now actually quite small in places compared to those in the middle suburbs. Two storey townhouses are actually not uncommon in new estates.
  • In the north-west (around Delahey/Sydenham), you can see a north-south divide where there is higher density on the eastern side. This corresponds with the municipal boundary between Brimbank and Melton. Presumably they’ve had different urban development policies.
  • The biggest clumps of density are in the inner city, particularly Carlton and Carlton North, Fitzroy, St Kilda, Richmond, and Kensington (the western side of which enjoys a 5½ days per week route 404 bus service).
  • Looking at the Central Activities Districts (CADs), there are clumps of density near the Dandenong and Box Hill CADs. But nothing to speak of inside Ringwood, Frankston, or Broadmeadows CADs (in 2006).
  • Other curious pockets of density in the suburbs include west of Highpoint Shopping Centre, Sunshine, Glenhuntly/Carnegie, and Glen Iris.
  • The lowest density suburbs in Melbourne are found in the middle and outer eastern suburbs (particularly Upwey/Belgrave), and in the north-east around well off areas such as Eltham, Toorak and Eaglemont. North west Reservoir seems to be a problem area – high socio-economic disadvantage and low density (not to mention a bus route that runs 5½ days a week).
  • Interesting to see relatively higher densities south of the Dandenong rail line.

For comparison purposes, I’ve also created a version based on larger Census Collection Districts (CCDs):

(note: this map doesn’t show anything outside the Melbourne SD)

What’s the difference you ask? You cannot see a great deal of difference, though the CCD map makes Melbourne look a little less dense.

But if you zoom in you can spot differences in some areas where a CCD is part residential, part not. Here’s an example in the Black Rock/Beaumaris area:

The CCD map on the left shows a few darker red blocks next to the whitespace, but that low density is not visible in the mesh blocks on the right, because the mesh blocks split the parkland and houses. You can also see that the CCDs run to the shoreline, while the beach area has been split into separate mesh blocks.

The advantage of the mesh block map is that it pretty much shows housing density, as most pieces of land that are not residential have been removed (including suburban parks).

But the advantage of CCD density is that it includes local parkland, which is a measure of open space within and immediately surrounding residential areas.

A better way of looking at the density equation is a cumulative distribution chart, as created by Fedor Manin on his blog We Alone on Earth (also referenced on Human Transit).Rather than having to worry about whether low density areas on the fringe are “urban” or not, you can just look at density by population share, and the fringe areas will quickly tail out anyway. On this basis the problems of using an administrative boundary of a city (which often contains a large areas of rural land) largely go away, but then you don’t get a single number.

I’ve lined up all mesh blocks and CCDs in the Melbourne SD in order of density, and created a cumulative profile of density for each.

You can see a big difference between CCDs and mesh blocks (note the X axis is logarithmic). On a mesh block basis, about half of Melbourne’s population lives at a density of greater than 3200/km2, whereas on a CCD basis, only 30% of Melbourne’s population lives at a density greater than 3200/km2. Take note anyone doing a comparison between cities!

Here’s a chart on the same data showing a population distribution across densities, using mesh blocks and CCDs:

You can see the most common density for mesh blocks is slightly higher than for CCDs. The peak for mesh blocks is between 2818-3162 people/km2 on my intervals. That’s an funny sounding interval because I’ve used logarithmic intervals (if you use even intervals of 100 people/km2, the peak is between 2900 and 3300 people/km2)

So what is the average density of Melbourne?

What is Melbourne? Should we include satellite urban areas around the city? For example, is Sunbury part of Melbourne? It is within the Melbourne SD (Statistical District) but not within the Melbourne “Urban Centre” as defined by ABS. Do you want to include non-residential areas (urban density), or not? (residential density)

Here are six very different measures of the urban density of Melbourne, including some measures that have minimum density threshold to restrict the calculation to “residential” areas. The maps above use 1000 people/km2 as a threshold for colouring, and this appears to include all “residential” areas, except for some very large block estates.

Geography Area (km2) Population Density (pop/km2)
Mesh blocks within all Urban Centres/Localities within Melbourne SD 2,357 3,506,207 1,488
“Melbourne” Urban Centre 2,153 3,368,069 1,564
CCDs within Melbourne SD, with population density > 100 people/km2 2,151 3,514,658 1,634
Meshblocks within Melbourne SD, with population density > 100 people/km2 1,566 3,511,982 2,242
Meshblocks within “Melbourne” Urban Centre, with population density > 100 people/km2 1,350 3,358,317 2,487
Meshblocks within Melbourne SD, with population density > 1000 people/km2 1,084 3,316,516 3,060

You can quickly see why trying to calculate an average density is a fraught exercise! Though the first two are trying to measure “urban density”, while the later are attempting to measure “residential density” (and note the threshold for residential density makes a big difference).

A density profile chart (as above) is clearly a good way to get around the defined area problem. But you still need to be consistent in the land parcel size you use when comparing cities. Not easy when comparing cities with different statistics agencies.

Land use map of Melbourne

Before I finish up, the other beauty of the mesh block data is that it contains a land use classification for each mesh block.

So it is really easy to produce a land use map of Melbourne (and Geelong for good measure):

What are those two black blobs I hear you ask? Essendon and Moorabbin Airports. Tullamarine and Avalon airports are actually classified agricultural.

And you will see residential areas stretching a fair way east of Frankston, and north of Craigieburn – though these are not actually developed. So it’s not perfect.

In fact, according to the data, there is a mesh block in Melbourne with 358 people living in an area of 420 square metres (852,700 people/km2). That’s 1.17 square metres of land space per person. Really? No, what appears to have happened is that almost every resident of the Burnside Retirement Village was registered to one tiny parcel of land. I suppose that’s census data for you!


Urban density and public transport mode share

Sat 16 January, 2010

Are all the statistics we see about urban density and transport reliable?

In in most recent book Transport for Suburbia (and his paper to ATRF 2009), Paul Mees highlights mis-use of urban densities figures by some researchers – the trouble being inconsistent determination of what exactly is the urban area of a city when you calculate density (= population/area).

To redress the issue of data quality, Paul has used calculations based on the actual urbanised area for Australia, US, Canadian and English cities (looking at entire greater metropolitan areas). He’s used figures based on urbanised areas as opposed to a statistical district, municipal council area, or other arbitrary administrative boundary which could contain large areas of non-urbanised land.

The calculations define urbanised areas using the following criteria:

  • US and Canadian cities: minimum 400 per square km,
  • Australian cities: minimum 200 per square km (meaning Australian cities might be slightly understated)
  • English cities: detailed mapping, likely to lead to slighty higher density figures.

So the calculations are not perfectly aligned, but they are more comparable than density calculations that use simple administrative boundaries. And they are also certainly consistent within each country.

He publishes tables of this data, talks about the relationships between them, but for some reason fails to plot the results on a chart. So I’ve decided to chart them (if you are after the data tables consult the ATRF paper above and/or the book).

The table of data is quite interesting in that it debunks some myths about the densities of various cities. Los Angeles is the highest density city in the entire table (the Freakonomics blog has a good series on Los Angeles Transportation: Facts and Fiction that is worth reading).

Firstly, car mode share in journey to work:

Is there a relationship between urban density and car mode share on journey to work? What do correlation coefficients say (closer to 1 and -1 means stronger) – something Mees didn’t calculate:

  • Australia: -0.74
  • Canada: -0.58
  • US: -0.46
  • England: -0.68

That suggests a relationship does exist, but it isn’t particularly strong. In reality, every city has unique characteristics and other attributes will explain the differences (the quality of services and infrastructure of alternative modes would certainly have a lot to do with it).

Looking at some outliers:

  • London has the highest density and lowest car mode share. It compares so favourably to all other English cities in car mode share, despite being only slightly more dense than Brighton/Worthing/Littlehampton (one combined urban area).
  • Canadian cities with the lowest car mode share are Toronto (highest density) and Victoria (second lowest density).

What about public transport mode share for journey to work?

This chart shows relationships stronger in some countries than others. Indeed the correlation coefficients are:

  • Australia: 0.79
  • Canada: 0.87
  • US: 0.42
  • England: 0.58

So much stronger relationships in Canada and Australia. Again there is a lot at work (particularly the quality and quantity of available public transport, which is one of Paul’s points).

In terms of outliers:

  • London is off the chart at 45.9% public transport.
  • Brisbane is perhaps an outlier for Australia – low density but pretty much the same rate of public transport use as Melbourne.
  • Los Angeles – which actually has the highest density of all the US cities but still relatively low public transport use.
  • The city with the highest PT mode share in the US is New York, even though it isn’t the most dense city in the US (there is lots of sprawl outside Manhattan).

The following walking chart might seem to suggest a strong relationship when you look at all cities, but remember that the density measurements aren’t quite the same, so it’s not fully conclusive. However, English cities still tend to have higher densities, particularly as many have green belts to prevent sprawl.

There is actually a negative correlation between density and walking (and cycling) for Australia and Canada. However I wouldn’t read too much into that as the sample size if small and there are lots of unique factors affecting each city.

But if you reckon there should be a positive correlation between walking and density, the outliers are:

  • Victoria (Canada) – low density but high walking mode share.
  • San Francisco and Los Angeles have low walking share.
  • Hobart – highest walking share in Australia, despite low density (and a big river dividing it in two).
  • Toronto – Canada’s most dense walking city, but least walking mode share
  • London – highest density but lowest walking share (9.2%)

Same again for cycling:

It looks like almost no one cycles in the US, despite having more favourable climate than Canada. Again higher cycling rates in the UK.

Cycling outliers:

  • Victoria (Canada) – high walking and cycling mode share
  • Kingston upon Hull (UK) 11% – off the chart’s scale (Mees suggests a large university may be the cause)
  • Canberra – which has a good network of bike paths (but still only 2.5% cycling mode share)
  • Sydney – with just 0.7% cycling – hilly terrain not helping.

What if you add up all the sustainable transport modes (PT, walking and cycling)? In theory, density should help all sustainable transport modes.

The correlations are:

  • Australia: 0.77
  • Canada: 0.62
  • US: 0.44
  • England: 0.70

The English result is actually stronger than PT (0.58), walking (0.32) and cycling (0.02). Do people respond to density using different, but sustainable modes?

Can public transport be effective in low density cities?

Paul’s main argument is that low transport density isn’t a barrier to successful public transport, and that it is easier to change public transport provision in a city, than it is to change urban densities (not that increasing urban densities isn’t a worthy goal).

Certainly urban density makes it easier to make public transport successful, but I’d agree that it is possible to make public transport work a lot better in low density environments.

Indeed, in Melbourne, relatively high quality SmartBus routes (that run every 15 minutes for most of the day on weekdays, very good by suburban Melbourne standards!) have been trialled in the outer suburbs, and the patronage response has been much stronger than typical elasticities (the subject of another post).

More generally, in Melbourne over the last three years we’ve seen a very strong correlation between growth in service provision (26% more kms) and growth in patronage (29%) – more than any other potential driver of patronage (again, topic for another post).

Comparable cities for population and density

Finally, by plotting population and density, you can see which cities are most similar – at least in these two respects (I’ve only looked at cities under 7 million and UK cities are off the density scale). I’ve labelled Australian cities and nearby equivalents. Note: the US and Canadian data is year 2000, while Australia is 2006.