Are Australian cities growing around their rapid transit networks?

Sun 31 March, 2019

My last post showed half of Perth’s outer urban population growth between 2011 and 2016 happened in places more than 5 km from a train station (see: Are Australian cities sprawling with low-density car-dependent suburbs?). It’s very car-dependent sprawl, with high levels of motor vehicle ownership (96 per 100 persons aged 18-84) and high private transport mode share of journeys to work (88%).

But what about population growth overall in cities? Is most growth happening close to rapid transit stations? How are cities orientated to rapid transit overall? And how does rapid transit orientation relate to mode shares?

Let’s dive into the data to find out.

Why is proximity to rapid transit important?

Public transport journey to work mode shares are generally much higher close to stations:

And motor vehicle ownership rates are generally lower closer to stations:

However it is worth noting that the proximity impact wears off mostly after only a couple of kms. Being 2-5 kms from a station is only useful if you can readily access that station – for example by bus, bicycle, or if you are early enough to get a car park.

Also, proximity to a station does not guarantee lower car dependence – the rapid transit service has to be a competitive option for popular travel destinations. I’ve discussed the differences between cities in more detail
(see: What explains variations in journey to work mode shares between and within Australian cities?), and I’ll a little have more to say on this below.

But in general, if you want to reduce a city’s car dependence, you’ll probably want more people living closer useful rapid public transport.

Is population growth happening near train/busway stations?

The following chart (and most subsequent charts) are built using ABS square kilometre grid population data for the period 2006 to 2018 (see appendix for more details).

Melbourne has seen the most population growth overall, followed by Sydney and Brisbane. Population growth in Perth has slowed dramatically since 2014, and has been remained slow in Adelaide.

Population growth in areas remote from stations most cities has been relatively steady. By contrast, the amount of population growth nearer to stations fluctuates more between years – there was a noticeable dip in growth near stations around 2010 and 2011 in all cities.

You can also see that in recent years the majority of Perth’s population growth has been more than 5 km from a station.

To show that more clearly, here’s the same data, but as a proportion of total year population growth:

You can see that most of Perth’s population growth has been remote from stations. In the year to June 2016, 85% of Perth’s population growth was more than 5 km from a train station (the chart actually goes outside the 0-100% range in 2016 because there was a net decline in population for areas between 2 and 4 km from stations). That was an extreme year, but in 2018 the proportion of population growth beyond 5 km from a station had only come down to 57.5%. That is not a recipe for reducing car dependence.

At the other end of the spectrum, almost half of Sydney’s population growth has been within 1 km of a train or busway station. No wonder patronage on Sydney’s train network is growing fast.

Melbourne has had the smallest share of population growth being more than 5 km from a station over most years since 2006. The impact of the South Morang to Mernda train line extension, which opened in August 2018, won’t be evident until the year to June 2019 data is released (probably in March 2020). Melbourne’s planned outer growth corridors are now largely aligned with the rail network, so I would expect to see less purple in upcoming years.

Here’s the same data for the next largest cities that have rapid transit:

Gold Coast – Tweed Heads has seen the most population growth, followed by the Sunshine Coast and more recently Geelong population growth has accelerated.

The Sunshine Coast stands out as having the most population growth remote from rapid transit (a Maroochydore line has been proposed), while Wollongong had the highest share of population growth near stations.

What about total city population?

The above analysis showed distances from stations for population growth, here’s how it looks for the total population of the larger cities:

Sydney has the most rapid transit orientated population, with 67% of residents within 2 km of a rapid transit station. Sydney is followed by Melbourne, Brisbane, Adelaide, and then Perth.

The most spectacular step change was in Perth in 2008, following the opening of the Mandurah rail line in the southern suburbs. This brought rail access significantly closer for around 18% of the city’s population. However, Perth has since been sprawling significantly in areas remote from rail while infill growth has all but dried up in recent years. 22% of the June 2018 population was more than 5 km from a train station, up from 19% in 2008. But it’s still much lower than 37% in 2007. Perth remains the least rapid transit orientated large city in Australia.

Brisbane has also seen some big step changes with new rail lines to Springfield (opening December 2013) and Redcliffe Peninsula (opening October 2016).

Several new station openings around Melbourne have kept the overall distance split fairly stable – that is to say the new stations have been just keeping up with population growth. The biggest noticeable step change was the opening of Tarneit and Wyndham Vale stations in 2015.

Adelaide’s noticeable step change followed the Seaford rail extension which opened in February 2014.

Sydney’s step change in 2007 was the opening of the North West T-Way (busway). The opening the Leppington rail extension in 2015 is also responsible for a tiny step (much of the area around Leppington is yet to be developed).

Here are the medium sized cities:

Woolongong is the most rapid transit orientated medium sized city, followed by Geelong and Newcastle.

In the charts you can see the impact of the Gold Coast train line extension to Varsity Lakes in 2009, the truncation of the Newcastle train line in 2014 and subsequent opening of “Newcastle Interchange” in 2017, and the opening of Waurn Ponds station in Geelong in 2015.

Average resident distance from a rapid transit station

Here’s a single metric that can be calculated for each city and year:

average distance to station

Many cities have barely changed on this metric (including Melbourne which has had a reduction of just 26 metres between 2006 and 2018). Brisbane, Perth and the Gold Coast are the only cities to have achieved significant reductions over the period.

It will be interesting to see how this changes with new rail extensions in future (eg MetroNet in Perth), and I’ll try to update this post each year.

How strong is the relationship with public transport mode shares at a city level?

Here is a comparison between average population distance from a train/busway station, and public transport mode share of journeys to work, using 2016 census data:

While there appears to be something of an inverse relationship (as you might expect), there are plenty of other factors at play (see: What explains variations in journey to work mode shares between and within Australian cities?).

In particular, Newcastle, Geelong, and Wollongong have relatively low public transport mode shares even though they have high average proximity to rapid transit stations.

Most journeys to work involving train from these smaller cities are not to local workplaces but to the nearby capital city, and those long distance commutes make up a relatively small proportion of journeys to work.

Here are some headline figures showing trains have minimal mode share for local journeys to work in the smaller cities:

CityTrain mode share
for intra-city
journeys to work
Train mode share
for all journeys
to work
Gold Coast0.6%2.2%
Sunshine Coast0.1%0.8%
Newcastle0.5%1.0%
Wollongong1.2%4.9%
Central Coast1.2%9.3%
Geelong0.5%4.5%

Appendix: About the data

I’ve used ABS’s relatively new kilometre grid annual population estimates available for each year from June 2006 onwards (to 2018 at the time of writing), which provides the highest resolution annual population data, without the measurement problems caused by sometimes irregularly shaped and inconsistently sized SA2s.

I’ve used train and busway station location data from various sources (mostly GTFS feeds – thanks for the open data) and used Wikipedia to source the opening dates of stations (that were not yet open in June 2006). I’ve mostly ignored the few station closures as they are often replaced by new stations nearby (eg Keswick replaced by Adelaide Showgrounds), with the exception of the stations in central Newcastle.

As with previous analysis, I’ve only included busways that are almost entirely segregated from other traffic.

I haven’t included Gold Coast light rail on account of its average speed being only 27 km/h (most Australian suburban railways average at least 32 km/h). I have to draw the line somewhere!

I also haven’t included Canberra as it lacks an internal rapid transit system (light rail is coming soon, although it will have an average speed of 30 km/h – is that “rapid transit”?).

Distances from stations are measured from the centroid of the grid squares to the station points (as supplied) – which I have segmented into 1 kilometre intervals. Obviously this isn’t perfect but I’m assuming the rounding issues don’t introduce overall bias.

Here’s what the Melbourne grid data looks like over time. If you watch carefully you can see how the colours change as new train stations open over time in the outer suburbs:

Melbourne grid distance from station 2

On this map, I’ve filtered for grid squares that have an estimated population of at least 100 (note: sometimes the imperfections of the ABS estimates mean grid squares get depopulated some years).

Finally, I’ve used Significant Urban Areas on 2016 boundaries to define my cities, except that I’ve bundled Yanchep into Perth, and Melton into Melbourne.


Are Australian cities sprawling with low-density car-dependent suburbs?

Wed 30 January, 2019

Many people talk about urban growth in Australian cities being car-dependent low-density suburban sprawl. But how true is that in more recent times? Are new greenfield density targets making a difference? Are cities growing around their rapid public transport networks? And how do growth areas compare to established areas at a similar distance out from city centres?

This post takes a look at what census data can tell us about outer urban growth areas in terms of population density, motor vehicle ownership, distance from train/busway stations, and journey to work mode shares.

How much of city population growth is in outer areas?

Firstly a recap, here is the percentage of annual population growth in each city that has occurred in “outer” areas (defined by groupings of SA3s around the edges of cities – refer my previous post for maps showing outer areas) for Greater Capital City Statistical Areas.

Sydney has had less than a third of its population growth in outer areas since around 2003, while Perth has mostly had the highest outer growth percentage (since 1996), and more recently pretty much all population growth in Perth has been on the fringe. You can see how the other cities sit in between.

However, not all of this “outer” population growth was in urban growth on the fringe. For that we need to distinguish between urban growth and infill development, even in “outer” areas. So we really need a better definition of outer growth areas.

How to define outer urban growth areas

I have built groupings of SA1s (Statistical Area Level 1) that try to represent outer urban greenfield residential development. SA1s are the smallest census geographic areas (average population 400) for which all census data variables are available.

I’ve selected 2016 SA1s that meet all of the following criteria:

  • Brand new SA1 or significant population growth: The 2016 SA1 is new and cannot be matched to a 2011 SA1 (by location/size and/or ABS correspondences), or if it can be matched, the population at least doubled between 2011 and 2016. Brand new SA1s are very common in urban growth areas as new SA1s are created to avoid oversized SA1s on last census boundaries (except this doesn’t always happen – more on that shortly).
  • In an SA2 with significant population growth: The SA2 (Statistical Area Level 2 – roughly suburb sized with typically 3,000 to 25,000 residents) that contains the SA1 had population growth of at least 1000 people between 2011 and 2016 (based on 2016 boundaries). That is, the general area is seeing population growth, not just one or two SA1s.
  • Are on – or close to – the urban fringe. I’ve filtered out particular SA2s that I’ve judged to be contain all or mostly in-fill development rather than greenfield development, or that are largely surrounded by existing urban areas and are not close to the urban fringe. I’ll be the first to admit that some of the inclusions/exclusions are a little arbitrary.

The criteria aren’t perfect, but it seems to work pretty well when I inspect the data. I’m calling these “Growth SA1s” or outer urban growth in this post.

For urban centres, I’m using Significant Urban Area 2016 boundaries (rather than Greater Capital City boundaries), and I’ve bundled Yanchep with Perth, Melton with Melbourne, and the Sunshine Coast and Gold Coast with Brisbane to form South East Queensland (SEQ).

Where are these outer urban growth areas?

What follows are maps for each city with the density of these growth SA1s shown by colour.

Melbourne’s northern and western growth areas:

Technical note: The maps do not show non-growth SA1s with fewer than 5 people per hectare, or “growth SA1s” with fewer than 1/hectare, although these SA1s are including in later analysis.

And the south of Melbourne:

Note: not shown on these Melbourne maps are isolated tiny growth SA1s in Rosebud and Mooroolbark.

Here are Sydney’s growth SA1s – all in the western suburbs:

Next up South East Queensland, starting in the north with the Sunshine Coast:

Northern Brisbane:

Outer urban growth is scattered in southern Brisbane and northern Gold Coast:

Gold Coast – Tweed Heads:

Perth’s northern and eastern growth areas:

Perth’s southern growth areas:

Note: Canning Vale East is an inclusion you could debate – the previous land use of the growth SA1s appear to have been rural based on satellite imagery.

Northern Adelaide:

Southern Adelaide:

And finally Canberra:

So how much of each cities’ population growth has been in outer growth areas?

Here’s a breakdown of the population growth for my six urban areas:

Over the five-year period, outer urban growth areas accounted for 19% of Sydney’s population growth, 43% of Melbourne’s, 37% of SEQ’s, 60% of Perth’s, 27% of Adelaide’s and 69% of Canberra’s.

Technical note: These “outer urban growth” figures are different to the chart at the top of this post which had a coarser definition of “outer” and used Greater Capital City boundaries. Some of my “outer urban growth” areas actually don’t quality as “outer” in the coarser definition, and I’ve also excluded several “outer” SA2s from “outer urban growth” where I’ve deemed the growth to be mostly infill. Hence the differences.

In case you are wondering, it’s not easy to create a longer-term time-series analysis about the proportion of population growth in “outer urban growth” areas because the classification of SA2s would have to change on a year-by-year basis which would be messy and somewhat arbitrary.

A challenge for density analysis: some SA1s are over-sized

You might have noticed some SA1s in the maps above are very large and show a low average density of 1-5 persons per hectare (I’ve coloured them in a light cyan). Many of these SA1s had thousands of residents in 2016, which is way more than the ABS guideline of 200 to 800 residents. Unfortunately what seems to have happened for 2011 and 2016 in some cities is that the ABS did not create enough SA1s to account for new urban areas. Some Melbourne SA1s had a population over 4000 in 2016. Many of these SA1s contain a combination or urban and rural land use, so their calculated density is rather misleading.

I’m designating any SA1s with more than 1000 residents and larger than 100 hectares as “oversized”, and I’ve exclude these from some density analysis below. Here’s a chart showing the proportion of outer growth area populations that are in oversized SA1s:

You can see it is a substantial problem in Sydney, Melbourne, Perth and South East Queensland, but miraculously not a problem at all in Adelaide or Canberra (I’m sure someone in ABS could explain why this is so!).

If you are interested, in 2011 it was a bigger problem in Melbourne, and only Canberra was fully clean.

So how dense are outer urban growth areas?

Firstly, I am excluding over-sized SA1s from this analysis for the reasons just mentioned.

Secondly, all cities will also have growth areas that were partially developed at the time of the census (ie some lots with occupied houses and other lots empty) so the densities measured here may be understated of the likely fully built-out density of these SA1s. That said, those areas perhaps are more likely to be in over-sized SA1s, but it’s hard to be sure. So keep this in mind when looking at growth area densities.

You can see dramatic differences, with Sydney, Canberra, and Melbourne showing higher densities, and South East Queensland with much lower densities. As we saw on the maps above, South East Queensland’s outer growth areas are very dispersed, so perhaps more of them are growing slowly and more of them are partially built-out? It’s hard to be sure.

But perhaps what is most remarkable is that Canberra had the highest densities in outer urban growth areas of any city – nothing like what you might consider suburban sprawl. Here’s what was 144.5 people per hectare in 2016 in Wright on Canberra’s new western growth front looks like:

(pic from Google Streetview, dated December 2016)

The densest SA1 in Sydney’s growth areas was 101 persons/ha. Nothing like this was seen in other cities.

Canberra’s outer growth areas are actually, on average, denser than the rest of Canberra (on a population weighted density measure):

The same was also true by a slim margin in both Perth and Adelaide, but they have relatively “suburban” densities for both growth and established areas. The growth areas of Sydney and Melbourne are more dense than Perth and Adelaide, but not compared to the rest of these cities as a whole. That’s probably got to do a lot with the large cities having dense inner suburbs.

So perhaps it is better to compare the urban growth areas with established areas a similar distance from city centres, which the following chart does (I’ve filtered out 5 km distance intervals without growth areas of at least 2000 population, and apologies for rather squashed Canberra label):

Technical note: for South East Queensland I’ve measured distances from the Brisbane CBD.

Outer growth areas were much more dense than the rest of each city at most distances from the city centre, except in Sydney.

One issue with the above chart is that different distance intervals have different populations – for example only 2,815 people were in growth SA1s at a distance of 45-50 km from the Perth CBD (just above my threshold of 2000), so the low population density of that interval is not hugely significant.

To get around that issue, I’ve calculated the overall population weighted density of non-growth SA1s that are within these 5 km distance intervals from the CBD (including all of SEQ beyond 15 km from the CBD). The following chart compares those calculations with the population weighted density of the growth areas overall:

This shows that urban growth areas are on average more dense than other parts of the city at similar distance from the CBD, except in South East Queensland. And remember, many of the growth SA1s will be partially built out, so their expected density is understated.

Are outer urban growth areas near rapid public transport?

The next chart shows the proportion of growth SA1 population by distance from the nearest train or busway station:

Technical notes: Distances are measured from the centroid of each SA1 to a point location defined for each station (sourced from August 2016 GTFS feeds). For oversized SA1s these distances might be a little longer than reality for the average resident. I haven’t excluded oversized SA1s because I want to see the population alignment of growth areas overall. Canberra excluded due to lack of separated rapid transit.

What sticks out clearly is that just over half the of the population in Perth’s outer growth areas was more than 5 km from a station in 2016. That is to say Perth has had the least alignment of outer urban growth areas and rapid public transport networks of all five cities. I’m not sure many urban planners would recommend such a strategy.

However, Perth’s MetroNet program appears to be trying to rectify this with new lines and stations proposed near urban growth areas such as Yanchep, Canning Vale East, Ellenbrook, Byford, and Karnup (Golden Bay). It will however take some time to get to them all built and open.

South East Queensland was second to Perth in terms of urban growth remote from stations, with a lot of the growth scattered rather than concentrated around rail corridors. I haven’t included the Gold Coast light rail in my proximity calculation – it runs at an average speed of 27 km/h (which is slower than most train networks) and doesn’t serve outer urban growth areas.

Sydney and Adelaide had the highest proximity of growth areas to stations.

Around half of Melbourne’s growth SA1s that were more than 5km from a train station were in Mernda and Doreen, a corridor in which a rail extension opened in 2018. Many of the rest are not in the current designated growth corridors, or are where future train stations are planned. Melbourne’s current designated urban growth corridors are fairly well aligned to its train network. From a transport perspective this is arguably a better kind of sprawl than what Perth has been experiencing.

Adelaide’s outer growth areas more than 5 km from a station were in Mount Barker (satellite town to the east) and Aldinga (on the far south coast of Adelaide).

Are the outer urban growth areas better aligned to rapid public transport stations than non-growth areas at the same distance from city centres? Here’s the chart as above but with an extra column for non-growth areas within the same distance intervals from the CBD (as before).

The populations of urban growth areas are less likely to be within a couple of kilometres of a station (most of that land probably has long-established urban development), but curiously in Adelaide and South East Queensland the urban growth areas are more likely to be within 5 kilometres of a station than the non-growth areas, suggesting better rapid public transport alignment than older urban growth areas. Older urban areas in other cities are more closely aligned to stations, particularly in Perth.

As an interesting aside, here’s a breakdown over the last three censuses of population by distance from train/busway stations (operational in 2016 – so it overstates 2006 and 2011 slightly):

You can really see how Perth has had much population growth remote from its rapid public transport network, which probably goes some way to explaining the overall 1.2% journey to work mode shift towards private transport between 2011 and 2016.

So how did people in these outer growth areas get to work?

Technical note: The figures here for “private transport” are for journeys involving only private transport modes – i.e. they exclude journeys involving both private and public transport (eg car+train).

While private transport (mostly car driver only journeys) dominated journeys to work from almost all growth areas, Melbourne and Sydney were the only cities to see significant numbers of residents in outer growth areas with private transport mode shares below 80%.

South East Queensland’s outer urban growth areas were the most reliant on private transport to get to work, with an overall private transport mode share of 93%, followed by Adelaide on 92%, Canberra on 91%, Perth on 90%, Melbourne on 86%, and Sydney on 81%.

Here’s how the growth area mode shares compare to other areas a similar distance from city centres (note: the Y-axis is not zero-based):

Significantly, the growth areas of Sydney and Melbourne had lower private transport mode shares of journeys to work than other parts of the city a similar distance out – even though they are generally further away from train or busway stations (as we saw above)! That’s not to say they didn’t drive themselves to a train station to get to work.

Similar to population density, here is a summary of growth areas compared to other areas in the same distance interval from the CBD:

There’s really not a huge amount of difference within cities. Sydney’s growth areas had a mode share 1.5% lower than non-growth areas, while Canberra’s growth areas had a mode share 2.5% higher.

What are motor vehicle ownership rates like in the outer growth areas?

My preferred measure is household motor vehicles per persons aged 18-84 (roughly people of driving age).

Motor vehicle ownership rates are generally very high across the growth areas – with the notable exceptions of Melbourne and Canberra where around a quarter of the growth area population had a motor vehicle ownership rate of less than 80 (although that is still pretty high!). (I explored this in more detail in an earlier post on Melbourne)

South East Queensland, Perth, and Adelaide outer urban growth areas had the highest motor vehicle ownership rates. Perth’s urban growth areas overall averaged 96.7 motor vehicles per persons aged 18-84 – pretty close to saturation.

How does motor vehicle ownership compare to established areas a similar distance from the city centre? The following chart compares motor vehicle ownership between urban growth and other areas at the same distance from the CBD (note: the Y-axis is not zero-based):

Motor vehicle ownership tends to increase with distance from the CBD, and in Sydney and South East Queensland the growth areas have higher ownership compared to non-growth areas. But the opposite is true in Melbourne, Perth and Canberra.

The population at each distance interval varies considerably, so here is a summary of the data across all distance intervals that have growth SA1s for each city:

The growth areas of Melbourne, Perth and Canberra had slightly lower motor vehicle ownership than other areas a similar distance from the city, while the opposite was true in other cities. That said, motor vehicle ownership rates are very high across all cities.

 

Finally, I’ll look at the relationships between these measures for growth areas (see another post for analysis for whole cities).

How does motor vehicle ownership relate to distance from stations?

Technical note: for scatter plots I’ve filtered out SA1s with less than 50 population as they are more likely to have outlier results (one person can change a measure by 2% or more).

Lower rates of motor vehicle ownership are generally only found close to train/busway stations (and are dominated by Melbourne examples), but close proximity to a station does not guarantee lower rates of motor vehicle ownership. Quite a few Adelaide SA1s are found the top middle part of the chart – these are all in Mount Barker which has frequent peak period express buses to the Adelaide CBD operating along the South East Freeway – which is similar to rapid transit although without a dedicated right of way.

How do journey to work mode shares relate to distance from stations?

Here’s a scatter plot of private transport mode shares of journeys to work and distance from train/busway station:

This shows that lower private transport mode shares are only generally seen within proximity of train or busway stations, and areas remote from stations are very likely to have high private transport mode shares. But also that proximity to a station does not guarantee lower private transport mode shares of journeys to work (particularly in SEQ).

Technical aside: You might have noticed that almost no SA1s report 99% private mode share. How can that be? The ABS make random adjustments to small figures to avoid identification of individuals which means you never see counts of 1 and 2 in their data. To get a mode share of 99% you’d need at least 300 journeys to work with “3” being non-private (or a similar but larger ratio). Very few SA1s have 300+ journeys to work, and even for over-sized SA1s, they are very unlikely to have only 3 or 4 non-private journeys to work. A mode share of 100% is much easier because you can get that no matter the total number of journeys.

How does population density relate to distances from train/busway stations?

Densities above 45 persons/ha were mostly only found within 5 km of stations, and almost entirely in Sydney and Melbourne. The highest densities were very close to train stations in Sydney. In the middle area of the chart you can see quite a few Perth SA1s that are around 30-40 persons/ha but remote from stations. These are all in the Ellenbrook area of Perth’s north-east, generating a lot of car traffic.

How does motor vehicle ownership relate to private transport mode shares of journeys work to work?

For interest, here is the relationship as a scatter plot:

There is certainly a relationship, but it’s not strong (r-squared = 0.22). Other factors are at play.

Conclusions

  • Perth and Canberra are seeing most of their population growth on the fringe, with Sydney, Adelaide, Melbourne, and South East Queensland seeing most of their population growth in established areas.
  • Growth areas in Sydney, Melbourne, and Canberra have higher than traditional urban densities, indeed Sydney and Canberra have a few very high density greenfield developments. Perth, Adelaide, and particularly South East Queensland have urban growth at relatively low densities. In fact, SEQ is the only major urban centre where growth areas are measured as less dense than non-growth areas at similar distances from the CBD.
  • Perth’s urban growth areas are largely remote from rapid transit stations, and this is likely contributing directly to very high and increasing rates of motor vehicle ownership and private transport mode shares. Melbourne’s current urban growth corridors are closely aligned to train stations (thanks to the opening of the Mernda line), and this is also largely true of Sydney and Adelaide.
  • Almost all outer urban growth areas had high rates of motor vehicle ownership. Overall, Melbourne, Perth, and Canberra’s outer urban growth areas had slightly lower rates of motor vehicle ownership compared to other areas at the same distance from the CBD. Only Sydney, Melbourne and Canberra have some growth areas with lower motor vehicle ownership and/or lower private transport mode shares of journeys to work – and these were all close to train or busway stations.

I hope you’ve found this at least half as interesting as I have.

For a similar and more detailed analysis around these topics, see this excellent 2013 BITRE research report on changes between 2001 and 2006.


Suburban employment clusters and the journey to work in Australian cities

Sun 8 July, 2018

Relatively dense suburban employment clusters can deliver more knowledge-based jobs closer to people living in the outer suburbs. Sydney has many such clusters, and Melbourne is now aiming to develop “National Employment and Innovation Clusters” as part of the city’s land use strategy, Plan Melbourne.

So what can we learn about existing employment clusters in Australian cities, particularly in regards to journeys to work? Can relatively dense suburban employment clusters contribute to more sustainable transport outcomes? Do such clusters have lower private transport mode shares than other parts of cities? How are mode shares changing for these clusters? How far do people travel to work in these clusters? Is there a relationship between job density, parking prices, and mode shares? How well served are these clusters by public transport? How do these clusters compare between cities?

This post investigates 46 existing clusters in Australia’s six largest cities. This is a longer post (there is a summary at the end), but I hope you find at least half as interesting as I do.

What’s a dense suburban employment cluster?

That’s always going to be an arbitrary matter. For my analysis, I’ve created clusters based on destination zones that had at least 40 employees per hectare in 2011 or 2016, were more than 4km from the city’s main CBD, and where collectively at least around 6,000 employees travelled on census day in 2016.

Unfortunately I can only work with the destination zone boundaries which may or may not tightly wrap around dense employment areas. Also, in order to ensure reasonable comparisons between census years, I’ve had to add in some otherwise non-qualifying zones to keep the footprints fairly similar. To mitigate potential issues with low density zones being included, I’ve used weighted employment density for each cluster in my analysis. But still, please don’t get too excited by differences in weighted job density as it’s far from a perfect representation of reality.

In particular, the following clusters include destination zones comprising both dense employment and non-employment land and so will potentially have understated weighted job density:

  • Nedlands
  • Fremantle
  • Bedford Park
  • Tooronga
  • Camberwell Junction
  • Hawthorn
  • Belconnen
  • Campbelltown
  • Hurstville
  • Kogarah
  • Randwick
  • North Ryde (quite significant – actual density is probably double)
  • Macquarie Park (a destination zone for the university includes large green areas)
  • Rhodes (significant residential area)
  • Parramatta (includes parkland)
  • Penrith (residential areas)
  • Bella Vista – Norwest – Castle Hill (includes a golf course)

Some of these clusters are a little long and thin and so are literally stretching things a little (eg Bella Vista – Norwest – Castle Hill, and Alexandria – Mascot), but it’s hard to cleanly break up these areas.

I think my criteria is a fairly low threshold for suburban employment clusters, but raising the criteria too much would knock out a lot of clusters. I should note that some potential clusters might be excluded simply because they did not contain small destination zones concentrated on more dense areas.

Belmont in Perth was the lowest density cluster to qualify (weighted jobs density of 42 jobs / ha). Here’s what it looks like (in 3D Google Maps in 2018):

Chatswood in Sydney was the highest density cluster – with a weighted job density of 433 jobs / ha. Here’s what it looks like (in 3D Apple Maps in 2018):

Apologies if your favourite cluster didn’t make the criteria, or you don’t like my boundaries. You can look up the 2016 boundaries for each cluster here, or view them all through Google maps.

Where are these clusters?

On the following maps I’ve scaled the clusters by employment size and used pie charts to show the modal split for journeys to work in 2016. All pie charts are to the same scale across the maps (the size of the pie charts is proportional to the number of journeys to the cluster in 2016).

Note that North Sydney is excluded because it is within 4 km of the CBD.

All of Melbourne’s clusters are east of the CBD, with Clayton the largest. Places just missing out on the cluster criteria include parts of the Tullamarine industrial area (5271 jobs at 55 jobs/ha), Doncaster (around 5000 jobs at 40+ jobs/ha), Chadstone Shopping Centre (5375 jobs at 105 jobs/ha), and La Trobe (around 7700 jobs but low density – and even if there was a destination zone tightly surrounding the university campus I suspect it would still not qualify on density ground).

Only three suburban clusters qualified in Brisbane.

Note: the Nedlands and Murdoch clusters are essentially the hospital precincts only and do not include the adjacent university campuses.

Adelaide only has one suburban cluster that qualifies – Bedford Park – which includes the Flinders University campus and Flinders Medical Centre.

The Canberra clusters cover the three largest town centres, each containing at least one major federal government department head office.

What proportion of jobs are in these dense suburban employment clusters?

The following chart shows that Sydney and Canberra have been most successful at locating jobs in suburban employment clusters (well, clusters that meet my arbitrary criteria anyway!):

The proportion of jobs not in the inner 4km or a suburban employment cluster increased between 2011 and 2016 in all cities except Sydney (although the shift was very small in Melbourne).

Here’s a summary of private transport mode shares for the clusters, versus the inner city versus everywhere else:

Inner city mode shares vary considerably between cities, in order of population size. Total job cluster private mode shares are only 4-7% lower than elsewhere in most cities, except for Sydney where they are 17% lower.

Sydney’s clusters combined also have a significantly lower private mode share of 68% – compared to 84-89% in other cities.

How do the clusters compare?

Here is a chart showing their size, distance from CBD, and private transport mode share for journeys to work in 2016:

Next is a chart that looks at weighted job density, size, and private mode share for 2016. Note I’ve used a log scale on the X axis.

(Unfortunately the smaller Kogarah dot is entirely obscured by the larger Alexandria – Mascot dot – sorry that’s just how the data falls)

There is certainly a strong relationship between weighted job density and private mode shares (in fact this is the strongest of all relationships I’ve tested).

Sydney has many more clusters than the other cities (even Melbourne which has a similar population), it has much larger clusters, it has more dense clusters, and accounts for most of the clusters in the bottom-right of the chart.

And there’s just nothing like Parramatta in any other city. It’s large (~41,000 jobs in 2016), has relatively low private transport mode share (51%), is about 20 km from the Sydney CBD, and has a high jobs density.

Melbourne’s Clayton has about three-quarters the jobs of Parramatta, is around the same distance from its CBD, but is much less dense and has 90% private mode share for journeys to work.

Curiously Sydney’s Macquarie Park – which on my boundaries has about the same number of jobs as Parramatta – is closer to the Sydney CBD and has a much higher private transport mode share and a lower job density. However it’s rail service is relatively new, opening in 2009.

Perth’s Joondalup and Murdoch are relatively young transit oriented developments with relatively new train stations (opening 1992 and 2007 respectively), however they also have very high private transport mode shares, which I think highlights the challenge of creating suburban transit-adjacent employments clusters surrounded by low density suburbia.

Also, many of Sydney’s suburban clusters have a lower private mode share than that of the overall city (67.6%). That’s only true of Hawthorn and Camberwell Junction in Melbourne, Fremantle in Perth, and Woden and Belconnen in Canberra.

Some outliers to the top-right of the second chart include Heidelberg (in Melbourne), Liverpool (in Sydney), and Nedlands (in Perth). The Heidelberg and Nedlands clusters are relatively small and are dominated by hospitals, while 37% of jobs in Liverpool are in “health care and social assistance”. Hospitals employ many shift workers, who need to travel at times when public transport is less frequent or non-existent which probably explains their relatively high private transport mode shares. Heidelberg is located on a train line, and is also served by several relatively frequent bus routes, including one “SmartBus” route, but still has a very high private transport mode share of 85%.

Outliers to the bottom-left of the second chart include Randwick, Burwood, and Marrickville (all in Sydney). While these are less dense clusters, I suspect their relatively low private transport mode shares are because they are relatively inner city locations well served by public transport.

As an aside, if you were wondering about the relationship between job density and private mode shares for inner city areas, I think this chart is fairly convincing:

Of course this is not to say if you simply increase job density you’ll magically grow public transport patronage – there has to be capacity and service quality, and you probably won’t get the density increase without better public transport anyway.

How well connected are these job clusters to public transport?

Arguably the presence of rapid public transport is critical to enabling high public transport mode shares, as only rapid services can be time competitive with private transport. By “rapid” I consider services that are mostly separated from traffic, have long stop spacing, and therefore faster average speeds. For Australian cities this is mostly trains, but also some busways and light rail lines (but none of the clusters are served by what I would call “rapid” light rail). Of course there is a spectrum of speeds, including many partly separated tram and bus routes, and limited stops or express bus routes, but these often aren’t time competitive with private cars (they can however compete with parking costs).

I have classified each cluster by their access to rapid transit stations, with trains trumping busways (note Parramatta, Blacktown, Westmead, and Liverpool have both), and some clusters sub-classified as “edge” where only some edge areas of the cluster are within walking distance of a rapid transit station (although that’s not clear cut, eg Murdoch). Here are the public transport mode shares, split by whether journeys involved trains or not:

It’s probably of little surprise that all of the high public transport mode share centres are on train lines (except Randwick), and that most public transport journeys to these clusters involve trains. However the presence of a train station certainly does not guarantee higher public transport mode share.

Only four clusters have some degree of busway access (Chermside and Randwick are not actually on a busway but have a major line to them that uses a busway). Only Upper Mount Gravatt has a central busway stations, and it has the third highest non-train (read: bus) access share of 12%.

Randwick is an interesting exception – the University of New South Wales campus in this cluster is connected to Central (train) Station by high frequency express bus services which seem to win considerable mode share. A light rail connection is being constructed between Randwick and the Sydney CBD.

Non-rail (essentially bus) public transport mode shares are also relatively high in Bondi Junction (15%), Parramatta (11%), Belconnen (10%), Brookvale (10%), Woden (10%), Fremantle (9%), Macquarie Park (9%). These are all relatively strong bus nodes in their city’s networks.

Clayton and Nedlands are not on rapid transit lines, but both have high frequency bus services to nearby train stations which results in slightly higher train mode shares (4% and 5%). For Clayton, only the Monash University campus is connected by a high frequency express bus and it had a 17% public transport mode share, whereas the rest of the cluster had public transport mode shares varying between 3 and 7%.

The Bedford Park cluster is frustratingly just beyond reasonable walking distance of Tonsley Railway Station (12 minutes walk to the hospitals and almost half an hour’s walk to the university campus) – so only about 10 people got to work in the cluster by train in 2016. However that’s going to change with an extension of the train line to the Flinders Medical Centre.

The train-centred clusters with low public transport mode shares are mostly not in Sydney, and/or towards outer extremities of the train network (except Box Hill and Heidelberg in Melbourne). So what is it about Sydney’s trains that makes such a difference?

Sydney’s train network is distinctly different to all other Australian cities in that there are many more points where lines intersect (outside the central city), creating many “loops” on the network (for want of a better expression). In all other cities, lines only generally intersect in the central city and where radial lines split into branches, and cross city trips by public transport generally only possible by buses (in mixed traffic). In Sydney lines do branch out then but then often bend around to intersect other neighbouring lines. This provides significantly more connectivity between stations. For example, you can get to Parramatta from most lines directly or with a single transfer somewhere outside central Sydney. Indeed, Sydney is the only city with a regular non-radial train service (T5 Leppington – Richmond, although it only runs every half-hour).

I’ve roughly overlaid Sydney’s dense suburban job clusters (in red) on its rail network map, and then marked the train mode shares:

While some clusters can only be accessed by a radial train line (or are off-rail), many are at intersection points, and most can be accessed by multiple paths along the network. The 29%+ train mode shares for Chatswood, Parramatta, St Leonards, Burwood, and Rhodes might be partly explained by these being highly accessible on the train network.

Here are Melbourne’s dense suburban employment clusters and train mode shares overlaid on Victoria’s rail network map:

The clusters connected to more train lines (Hawthorn and Camberwell) have higher train mode shares, although they are also closer to the city.

The Spatial Network Analysis for Multimodal Urban Transport Systems (SNAMUTS) methodology (led by Professor Carey Curtis and Dr Jan Scheurer) uses graph-based analysis of public transport networks to develop several indicators of network performance. One indicator that measures network accessibility is closeness centrality, which looks and speed and frequency of services to connect to other nodes in the network (it actually uses inter-peak frequencies and speeds, but they probably correlate fairly well with services in peak periods). A lower score indicates better accessibility.

I’ve extracted the closeness centrality scores for public transport nodes in each employment clusters (from the nearest available data to 2016 at the time of writing, some as old as 2011 so not perfect) and compared this with private transport mode shares to these clusters:

Some clusters were not really centred on a public transport node in the SNAMUTS analysis (eg Osborne Park in Perth, Clayton in Melbourne) and hence are not included in this analysis. These clusters have very high private transport mode shares, and would likely be towards the top right of the chart.

There’s clearly a relationship between the closeness centrality and private mode shares, with low private more shares only occurring where there is high accessibility by public transport. But it’s not super-strong, so there are other factors at play.

Some of the outliers in the bottom right of the distribution include Upper Mount Gravatt (based on a large shopping centre but also on a busway), Murdoch (dominated by hospitals a moderate walk from the station), Nedlands (also dominated by hospitals), Chermside (a combination of hospital and large shopping centre, with the bus interchange remote from the hospital), and Bedford Park (where 63% of jobs are in health) . Again, the pattern of higher private transport mode shares to hospitals is evident.

So do you need strong public transport access to support higher job densities? Here’s the relationship between closeness centrality and weighted job density:

There are no clusters with poor public transport access and high job density, which is not surprising. But this does suggest it could be difficult to significantly increase job densities in clusters currently in the top left of this chart without significantly improving public transport access.

Interestingly, Box Hill in Melbourne does have a similar closeness centrality score to Parramatta and Chatswood in Sydney, suggesting it might be able to support significantly higher job density. However, it only has rapid (train) public transport from two directions. It might be more challenging to maintain bus and tram travel times from other directions if there is significant jobs growth.

Melbourne’s largest cluster – Clayton – is not on the chart because it is not centred on a public transport node. There is however a bus interchange on the southern edge of the cluster at Monash University, which has a relatively low closeness centrality score of 64. I suspect the main employment area would probably have a higher closeness centrality score if it were to be measured because it not connected to the train network by a high frequency express shuttle service and has fewer bus routes. That would place it in the top-left part of the above chart (2016 weighted job density being 63 jobs/ha).

Do higher density clusters have fewer car parks?

The higher density centres certainly tended to have lower private mode shares, but does that mean they don’t have much car parking?

Well I don’t know how many car parking spaces each centre had, but I do know how many people travelled to work by car only, and from that I can calculate a density of car-only journeys (and I’ve calculated a weighted average of the destination zones in each centre). That’s probably a reasonable proxy for car park density.

Here’s how it compares to jobs density (note: log scales on both axes):

There is a very strong correlation between the two – in general centres with higher job density also have higher car density. The strongest correlation I can find is for a quadratic curve that flattens out at higher job densities (as drawn, with R-squared = 0.77), which simply suggests you get lower private mode shares in higher density clusters (in general).

The clusters on the bottom side of the curve have lower car mode shares, and so have a lower car density. Many are inner city locations with better public transport access, but also many nearby residents.

Heidelberg (a hospital-based cluster in Melbourne), has the highest car density of all centres and a high job density, but isn’t a large centre.

Do walking mode shares increase when there are many nearby residents?

If there are many residents living within walking distance of a cluster, relative to the size of that cluster, then you might expect a higher walking mode share, as more employees of the cluster are likely to live nearby.

I’ve roughly summed the number of residents who travelled to work (anywhere) and lived within 1km of each cluster. I’ve then taken the ratio of those nearby working residents to the number of journeys into the cluster, and then compared that with walk-only mode shares for 2016:

Yes, there’s definitely a relationship (although not strong), and this may explain some of the outliers in the previous charts such as Randwick, Marrickville, St Leonards and Bondi Junction.

Is there a relationship between parking costs and mode shares?

It’s quite difficult to definitively answer this question because I don’t have parking prices for 2016, and many car commuters might not be paying retail prices (eg employer-provided free or subsidised parking).

I’ve done a quick survey using Parkopedia of parking prices for parking 8:30 am to 5:30 pm on Monday 2 July 2018, and picked the best price available in each cluster. Of course not everyone will be able park in the cheapest car park so it’s certainly not an ideal measure. An average price might be a slightly better measure but that would be some work to calculate.

But for what it worth, here is the relationship between July 2018 all day parking prices and 2016 private transport mode shares:

You might expect an inverse correlation between the two. Certainly clusters with very cheap or free parking had very high private transport mode shares, but other centres are scattered in the distribution.

Looking at outliers in the top right: I suspect Bedford Park (63% health workers), Heidelberg (hospital precinct), Tooronga (with one major employer being the Coles HQ), Chermside (including Prince Charles Hospital), and Rhodes will have significantly cheaper parking for employees (with visitors paying the prices listed on Parkopedia). Indeed, I could not find many parking prices listed for Rhodes, but there are clearly multi-storey parking garages near the office towers not on Parkopedia.

Looking at outliers in the bottom left: Relatively cheap $15 parking is available at multiple car parks in Bondi Junction. The $10 price in Chatswood was only available at one car park, with higher prices at others, so it is probably below the average price paid. Maybe traffic congestion is enough of a disincentive to drive to work in these centres?

For interest, here’s the relationship between weighted car density and parking prices:

The relationship is again not very strong – I suspect other factors are at play such as unlisted employer provided car parking, as discussed above.

So does job growth in suburban employment clusters lead to lower overall private transport mode shares?

Here is a chart showing the effective private mode share of net new trips in each job cluster, plus the inner 4 km of each city:

(Fremantle, Dandenong, Burwood, and Woden had a net decline in jobs between 2011 and 2016 and so have been excluded from this chart)

The chart shows that although many suburban jobs clusters had a low private mode share of net new trips, it was always higher than for the inner 4 km of that city.

Here’s a summary of net new trips for each city:

So every new 100 jobs in suburban employment clusters did generate many more private transport trips than new jobs in the inner city, particularly for Sydney (45 : 10), Melbourne (68 : 13), and Canberra (84: 18). But then new jobs in suburban employment clusters had significantly lower private transport mode shares than new jobs elsewhere in each city.

So arguably if you wanted to minimise new private transport journeys to work, you’d aim for a significant portion of your employment growth in the central city, and most of the rest in employment clusters (ideally clusters that have excellent access by rapid public transport). Of course you would also want to ensure your central city and employment clusters were accessible by high quality / rapid public transport links (not to forget active transport links for shorter distance commutes).

One argument for growing jobs in suburban employment clusters is that new public transport trips to suburban employment clusters will often be on less congested sections of the public transport network – particularly on train networks (some would even involve contra-peak travel relative to central city). On the other hand, new jobs in the central city have much higher public transport mode shares, but relatively expensive capacity upgrades may be required to facilitate the growth.

New active transport trips to the central city and employment clusters probably requires the least in terms of new infrastructure, and there are probably very few congested commuter cycleways in Australian cities at present.

Another argument for suburban employment clusters is to bring jobs closer to people living in the outer suburbs.

Are new private transport trips to suburban employment clusters much shorter than new private transport trips to the central city, and therefore perhaps not as bad from a congestion / emissions point of view?

Certainly many of these clusters will have congested roads in peak periods, but the distance question is worth investigating.

So how far do people travel to work in different employment clusters?

The 2016 census journey to work data now includes on-road commuting distances (thanks ABS!).

Of course for any jobs cluster there will be a range of people making shorter and longer distance trips and it is difficult to summarise the distribution in one statistic. Averages are not great because they are skewed by a small number of very long distance commutes. For the want of something better, I’ve calculated medians, and here are calculations for Sydney job clusters:

(I’ve added a “Sydney” jobs cluster which is the “Sydney – Haymarket – The Rocks” SA2 that covers the CBD area).

There’s a lot going on in this data:

  • Median distances for private transport commutes to most employment clusters are longer than to the CBD (particularly the big clusters of Macquarie Park and Parramatta).
  • The clusters of Brookvale, Bondi Junction, and Randwick near the east coast have lower medians for motorised modes, probably reflecting smaller catchments. Randwick and Brookvale also do not have rail access, which might explain their low median public transport commute distances.
  • Public transport median commute distances were longer in the rail-based near-CBD clusters of Bondi Junction, Alexandria – Mascot, and St Leonards, but also in some further out rail-based clusters, including Parramatta, Westmead and Penrith.
  • Penrith – the cluster furthest from the Sydney CBD – curiously had the longer public transport median commute distance, which probably reflects good access from longer distance rail services (but public transport mode share was only 14%).
  • Active transport medians vary considerably, and this might be impacted by the mix of shorter walking and longer cycling trips. For example, North Ryde saw more cycling than walking trips, but also had only 1% active transport mode share.

Here’s the same for Melbourne (with a cluster created for the CBD):

Clayton, Dandenong, and Melbourne CBD median commute distances were very similar, whereas median commutes to other clusters were mostly shorter.

Here are results for clusters in the smaller cities:

In Perth, Joondalup had shorter median commuter distances, while Osborne Park and Murdoch (both near rapid train lines) had the longest median public transport journey distances (but not very high public transport mode shares: 7% and 15% respectively). Half of the suburban clusters had a longer median private transport distance than the CBD, and half were shorter.

In Brisbane, median private commute distances were shorter in Chermside, but similar to the city centre for other clusters.

Coming back to our question, only some suburban employment clusters have shorter median private transport commute distances. I expect the slightly shorter distances for those clusters would not cancel out the much higher private transport mode shares, and therefore new suburban cluster jobs would be generating more vehicle kms than new central city jobs.

But perhaps what matters more is the distance travelled by new commuters. New trips from the growing urban fringe to a CBD would be very long in all cities. While ABS haven’t provided detailed journey distance data for 2011, some imperfect analysis of 2011 and 2016 straight line commuter distances between SA2s (sorry not good enough to present in detail) suggests average commuter distances are increasing by 1-2 kms across Sydney and 2-3 kms across Melbourne, and these increases are fairly consistent across the city (including the central city). This may reflect urban sprawl (stronger in Melbourne than Sydney), with new residents on the urban fringe a long way from most jobs.

So did private transport mode shares reduce in suburban employment clusters?

Yes, they did reduce in most clusters, but some saw an increase of up to 2%.

The cluster with the biggest shift away from private transport was Rhodes in Sydney (relatively small and only moderately dense), followed by Perth’s fastest growing hospital cluster of Murdoch.

But perhaps more relevant is how fast each cluster is growing and the mode share of new jobs:

If you want to reduce private transport travel growth, then you don’t want to see many clusters in the top right of this chart (growing fast with high dependency on private transport). Those centres could be experiencing increasing traffic congestion, and may start to hit growth limits unless they get significantly improved public transport access.

Of the cluster in the top-right:

  • Bella Vista – Norwest – Castle Hill will soon have a rapid rail service with Sydney Metro.
  • Murdoch’s high private transport mode share might reflect the fairly long walking distance between the station and hospitals (up to 10 minutes through open space with no tree canopy), but also hospital shift workers who may find private transport more convenient.
  • Clayton might reflect most jobs being remote from the train line (although it is served by three SmartBus routes that have high frequency and some on-road priority). Note: my Monash cluster unfortunately does not include the Monash Medical Centre that is closer to Clayton Station and very job dense. The hospital precinct had its own destination zone in 2016 with 88% private transport mode share, but was washed out in a larger destination zone in 2011 which made it difficult to include in the cluster (for the record, that 2011 destination zone also had an 88% private transport mode share).
  • Joondalup is a large but not particularly dense employment area, and I suspect many jobs are remote from the train/bus interchange, and some local bus frequencies are low.

Can you predict mode shares with a mathematical model?

I have put the data used above into a regression model trying to explain private transport mode shares in the clusters. I found that only weighted job density, walking catchment size, and distance from CBD were significant variables, but this might be for want of a better measure of the quality of public transport accessibility (SNAMUTS Closeness Centrality scores are not available for many centres).

I also tested the percentage of jobs in health care and social assistance (looking for a hospital effect), the surrounding population up to 10km (nearby population density), median travel distances, and the size of clusters, but these did not show up as significant predictors.

Can you summarise all that?

  • Compared to other cities, Sydney has many more clusters and they are larger, more dense, and generally have much lower private transport mode shares.
  • With the exception of Canberra, less than half of all jobs in each city were in either the inner city area or a dense suburban jobs cluster. In Perth it was as low as 32%, while Sydney was 45%, and Canberra 54%.
  • Higher density clusters correlate with lower private transport mode shares.
  • Only higher density clusters centred on train stations with strong connections to the broader train network achieve relatively high public transport mode shares of journeys to work.
  • High quality bus services can boost mode shares in clusters, but the highest bus-only mode share was 15% (in 2016).
  • High-frequency express shuttle bus services can boost public transport mode shares in off-rail clusters.
  • Walk-only mode shares for journeys to work are generally very low (typically 2-5%) but generally higher in clusters where there are many nearby residents.
  • Private transport mode shares are generally 90%+ in clusters with free parking.
  • I suspect there is a relationship between parking prices and private mode share, but it’s hard to get complete data to prove this. Subsidised employer provided parking probably leads to higher private transport mode shares, and may be common at hospitals. However unexpectedly cheap parking in Bondi Junction and Chatswood needs to be explained (perhaps an oversupply, or just horrible traffic congestion?).
  • There is some evidence to suggest hospitals are prone to having higher private transport mode shares, possibly due to significant numbers of shift workers who need to commute at times when public transport service levels are lower.
  • Private transport shares in suburban clusters are much higher than central cities, but lower than elsewhere in cities. The private transport mode share of net new jobs in clusters is much higher than for central city areas, but generally lower than elsewhere in cities.
  • High density clusters still have large amounts of car parking.
  • Median commuter distances to suburban employment clusters are sometimes longer and sometimes shorter than median commuter distances to each cities CBD.
  • The clusters of Joondalup, Clayton, Murdoch, and Bella Vista – Norwest – Castle Hill have grown significantly in size with very high private transport mode shares. These centres might be experiencing increased traffic congestion, and their growth might be limited without significant improvements in public transport access.

What could this mean for Melbourne’s “National Employment and Innovation Clusters”?

One motivation for this research was getting insights into the future of Melbourne’s National Employment and Innovation Clusters (NEICs). What follows is intended to be observations about the research, rather than commentary about the whether any plans should be changed, or certain projects should or should not be built.

Firstly, the “emerging” NEICs of Sunshine and Werribee didn’t meet my (arguably) low criteria for dense employment clusters in 2016 (too small). The same is true for the Dandenong South portion of the “Dandenong” cluster (not dense enough).

Parkville and Fishermans Bend would have qualified had I not excluded areas within 4km of the CBD.

Significant sections of the Parkville, Fishermans Bend, Dandenong, Clayton, and La Trobe NEICs are currently beyond walking distance of Melbourne’s rapid transit network. Of these currently off-rail clusters:

  • Parkville: a new rail link is under construction
  • Fishermans Bend: new light and heavy rail links are proposed. In the short term, paid parking is to be introduced in some parts in 2018 (which had commuter densities of 47-63 per hectare in 2016). The longer term vision is for 80% of transport movements by public or active transport.
  • Clayton: New light and heavy rail links are proposed. The Monash University campus has had paid parking for some time, but there appears to be free parking for employees in the surrounding industrial areas to the north and east. It will be interesting to see if/when paid parking becomes a reality in the industrial area (commuter densities ranged from 48 to 74 jobs/ha in 2016, not dissimilar to Fishermans Bend). The Monash Medical Centre area is relatively close to Clayton train station, has very high commuter density (329 per hectare in 2016 before a new children’s hospital opened in 2017) and had 88% private transport mode share in 2016. No doubt car parking will be an ongoing challenge/issue for this precinct.
  • La Trobe: No rapid transit links are currently proposed to the area around the university, which had an 83% private transport mode share in 2016. There is a currently a frequent express shuttle bus from Reservoir station to the university campus, and a high frequency tram route touches the western edge of the campus.
  • Dandenong South: The area is dominated by industrial rather than office facilities, and the job density ranges from 7 to 33 commuters per hectare, which is relatively low compared to the clusters in my study. There are no commercial car parks listed on Parkopedia so I assume pretty much all employees currently get free parking. No rapid transit stations are proposed for the area. The area is served by a few bus routes, including one high frequency SmartBus route, but 98% of new jobs between 2011 and 2016 were accounted for by private transport trips. This suggests it is difficult even for high-frequency (but non-rapid) public transport to complete with free parking in such areas.

Another potential challenge is connectivity to Melbourne’s broader train network. Parkville (and Fishermans Bend should Melbourne Metro 2 be built) will be well connected to the broader network by the nature of their central location. The area around Sunshine station has excellent rail access from four directions (with a fifth proposed with Melbourne Airport Rail). Dandenong, La Trobe and Werribee are on or near 1 or 2 radial train lines.

You can read more about Melbourne’s employment clusters in this paper by Prof John Stanley, Dr Peter Brain, and Jane Cunningham, which suggests there would be productivity gains from improved public transport access to such clusters.

I hope this post provides some food for thought.


Can Airbnb explain falls in dwelling occupancy in Melbourne and Sydney?

Thu 10 May, 2018

According to census data, private dwelling occupancy has been declining in most Australian cities (refer my earlier post on the topic). Could an increase in private dwellings dedicated to Airbnb rental – but vacant on census night (a Tuesday in winter) – explain much of this decline? Let’s look at the data.

Firstly here’s a reminder of private dwelling occupancy trends in Australia’s 16 largest cities.

Dwelling occupancy rates declined in all large cities (but rose in some smaller urban areas, particularly on Central (NSW), Sunshine, and Gold Coasts).

The ABS have advised me that their field officers would have no way of telling whether a dwelling is on Airbnb, and would therefore count them as private dwellings. So vacant Airbnb dwellings could account for unoccupied private dwellings.

How many of the additional unoccupied dwellings might be dedicated to Airbnb?

The fantastic site Inside Airbnb provides data scraped from the Airbnb website about listings in various cities. I’ve used available data extracted on 4 September 2016 for Melbourne and 4 December 2016 for Sydney (the closest data sets available to the August 2016 census). I’ve then filtered for entire home/apartment listings that had more than 90 days availability in the 12 months ahead and had been reviewed at least once in the last six months, to estimate the number of “active and dedicated” Airbnb dwellings. Definitely just an estimate.

For the area for which Melbourne Airbnb data is available (I’ve approximated Inside Airbnb’s unpublished boundary as SA3s with any listings in 2016) these Airbnb dwellings account for 0.19% of total private dwellings. For that same area, dwelling occupancy dropped 0.71% from 92.61% to 91.90% between 2011 and 2016.

According to a Melbourne University study using data from commercial Airbnb data site AIRDNA, around 62% of entire home/apartment Melbourne listings (that were not blocked out by owners) were unoccupied on Saturday 27 August 2016.

I’m guessing the Airbnb vacancy rate might have been higher on census night (a Tuesday). If say 70% of the Airbnb dwellings were empty on census night (just a guess), then they would account for 0.09% out of the 0.71% decrease in dwelling occupancy in Melbourne between 2011 and 2016, which is about 19%.  Note: Airbnb barely existed in Melbourne in 2011 – there were only 161 Airbnb listings.

If somewhere between 60% to 80% of active/dedicated Airbnb properties were vacant, then they might explain between 16% and 21% the decline in dwelling occupancy in Melbourne.

For the equivalent area of Sydney, these Airbnb dwellings account for 0.22% of private dwellings, and there was a drop in private dwelling occupancy of 0.58% between 2011 and 2016. If somewhere between 60% to 80% of active/dedicated Airbnb properties were vacant, then they would explain between 23% and 30% of the decline in overall dwelling occupancy.

However I must stress these are rough estimates and might be over or under the actuals for several reasons:

  • It’s possible that some of these “entire home/apartment” listings are not counted by the ABS as dwellings (eg granny flats or segmented buildings that don’t have separate addresses) which would lead to over-estimates.
  • Some Airbnb listings that have less than 90 days availability in the 12 months ahead might just be very popular – leading to underestimates (my guess is that is unlikely).
  • The Sydney figure might be an overestimate because the Airbnb data was extracted three months after the census, and the total number of Airbnb listings almost doubled in 2016.
  • The actual Airbnb vacancy rate on census night might not have been in the 60-80% range.
  • I don’t know exactly where the city boundary was drawn for the Inside Airbnb data, but my approximation is more likely to be larger – which would lead to slight underestimates (probably very slight as the differences would be in peri-urban areas with few dwellings).
  • There may be other reasons – please comment.

That said, it looks like Airbnb might explain somewhere in the order of a fifth of the drop in private dwelling occupancy in Melbourne and Sydney between 2011 and 2016. Certainly not all of it, but probably not none of it either.

What proportion of dwellings are dedicated to Airbnb in different parts of Melbourne and Sydney?

Here’s a map of active/dedicated Airbnb dwellings (as per filter above) as a percentage of total dwellings in Melbourne at SA2 level:

It maxes out at 2.5% in the Melbourne CBD (that’s 1 in 40 dwellings), followed by Southbank and Fitzroy at around 1.9%. Mount Dandenong – Olinda is the orange patch to the east which measures 1.3%. View the data in Tableau.

As you would expect, Airbnb properties appear to be more prevalent around the inner city and tourist areas (eg St Kilda and the Dandenongs). These are also the areas with generally lower dwelling occupancy, and certainly some of the unoccupied dwellings in the census will be Airbnb dwellings.

Here is Sydney:

The highest rates are 2.6% around Bondi Beach, and 2.5% at Avalon – Palm Beach. Manly comes in at 1.5%, Surry Hills is 1.5%, Potts Point – Woolloomooloo is 1.4%, while the CBD area is 1.3%. Again, you can explore this Airbnb data in Tableau.

Could Airbnb properties explain the spatial differences in dwelling occupancy?

Here’s a plot of dwelling occupancy and Airbnb percentages for SA2s in Melbourne and Sydney.

I’ve done a linear regression on each city, and while the relationships are significant, they are not strong, and the correlation coefficients are -4.9 in Sydney and -1.5 in Melbourne. The signs are as expected (ie more Airbnb, lower occupancy), but the magnitudes are much higher than would be the case if Airbnb was the main explanation for lower dwelling occupancy (otherwise they would be around -1 or smaller). Which essentially means Airbnb presence is correlating with other drivers that would explain lower dwelling occupancy.

Indeed inner city and tourist areas had lower dwelling occupancy in both 2006 (when Airbnb didn’t exist) and 2011 (when Airbnb only had a tiny presence in Australia).

Therefore I think we can conclude Airbnb properties are more prevalent in areas where dwelling occupancy is lower for other reasons – one of which is likely to be popular places for visitors. Unoccupied Airbnb properties are almost certainly part of the pattern, but cannot explain the majority of the decrease in dwelling occupancy.

Can you do those Airbnb maps at higher resolution?

It’s getting a bit beyond the topic of transport, but yes I can go down to SA1 level. It’s not particularly important, but certainly interesting.

A disclaimer: Airbnb introduce randomised errors on property locations of up to 150 metres, so there will be some mis-attribution of properties to SA1s, but hopefully not too much. Also, I’m still only counting properties that match the above criteria.

Here’s inner Melbourne (note: different colour scale to last map):

Airbnb maxes out at 11% for three city blocks around Swanston Street and Collins Street, plus a large SA1 in East Melbourne that actually only contains a small residential area close to the CBD (including an apartment tower at 279 Wellington Parade). There’s also an SA1 in Southbank behind Crown Casino that is 10% Airbnb.

Curiously, there were only about 6 Airbnb listings in the New Quay apartments in Docklands that had 65-70% occupancy (refer earlier post), so Airbnb is definitely not to blame of the low occupancy of those towers.

Outside the central city, other hot spots are St Kilda around Acland Street (6%), just east of South Yarra Station (6%), and a patch of Olinda (5%). Explore in Tableau.

Here’s Sydney:

It tops out at 11% in the southern part of the CBD, with 10% in part of Pyrmont and 7% in pockets near Manly and Bondi Beach. Other hotspots include Coogee (6%) and Whale Beach further north (5%). Explore in Tableau.