Which Australian city is sprawling the most?

Sat 3 December, 2016

[Updated May 2019 with June 2018 population estimates and new data on components of population growth]

For a while now, I’ve been tracking urban sprawl and consolidation in Melbourne, but some interesting research prompted me to compare Melbourne to the other large Australian cities.

My question for this post: How do Australian cities compare for growing out versus up? (and by growth I’m talking about population)

Firstly, I need to define “outer” growth.

To do this, I’ve mapped the 2001, 2006, and 2011 ABS urban centre boundaries of each city. I’ve then looked at Statistical Area 3 regions within each Greater Capital City area that either saw substantial urban growth between 2001 and 2011, or were located on the fringe of the main urban area.

Here’s a map of Melbourne, with my designated “outer” areas shaded in a transparent blue:

The area in the middle is mostly shaded green – land considered by the ABS to be urban since at least 2001. There are a few yellow and orange areas (developed 2001-06 and 2006-11 respectively) that are not part the blue shaded “outer” area. The larger orange section visible in the south is mostly green wedge or industrial land, so does not represent growth of residential areas (maps for other cities below). The other yellow and orange areas are relatively small, and many have non-residential land uses.

I’ve done a similar process for Sydney, Perth, Adelaide, and the conurbation of South East Queensland (i.e. Brisbane, Gold Coast, and Sunshine Coast combined). See the end of this post for equivalent maps of these cities.

With an outer area defined for each city, I have calculated the annual population growth of these outer areas (based on 30 June estimates for each year) as a proportion of total population growth in each city:

percentage outer city population growth v4

As you can see almost all recent population growth in Perth is happening in the outer suburbs (in fact there was population decline in the rest of Perth in 2015-2016), while it has been around half in Melbourne and South East Queensland, and lower in other cities, although Sydney had an uptick in 2018.

For reference, here are annual population growth rates for the five cities:

city population growth v2

Perth saw dramatic growth between 2007 and 2013, but much less growth in the last few years, and most of that happened in outer areas. In recent years Melbourne has grown the fastest.

The population data I’m using goes back to 1991, which creates some interesting results in the early nineties (even though my defined “outer” areas are trying to measure growth from 2000 onwards). In Adelaide in 1993 the outer areas had “156%” of the city’s population growth – which actually means that the outer areas grew (by 4509 people) while the inner areas had population decline (by 1617 people). At the same time in Melbourne, “103%” of population growth occurred in the outer areas as there was a net reduction of 393 people in the inner areas of Melbourne.

This reflects a previous trend for cities to grow mostly outwards until the mid-1990s, when urban densification took off. For more on this topic see How is density changing in Australian cities? (2nd edition)

So is Perth the most sprawling large city in Australia? Well, yes in terms of percentage of population growth, but not in terms of absolute population growth in outer areas:

outer city population growth v4

On my definitions of outer areas, Melbourne is charging ahead, with over 66,000 residents moving into growth areas in 2017-18. Perth peaked in 2012, but has fallen back since. Adelaide just hasn’t seen a lot of population growth in recent decades.

I’m measuring sprawl by population, but you could argue that it might be better measured by urbanised area. Unfortunately that is tricky because definitions of urbanised area have changed over time and occasionally have large jumps as non-urban wedges are absorbed.

Population growth in outer Sydney slowed dramatically between 2002 and 2006. The chart below shows there was also a slow down in non-outer areas, although it was a little less dramatic. Around this time Sydney also transitioned from around 50% of growth being in outer areas, down to around 30%.

Here is the annual population growth in the non-outer areas of each city:

nonouter city population growth v4

Around 2007 there was an acceleration of population growth in non-outer areas in most cities (although there was a subsequent lull around 2010-2012). In 2015-16 in Perth, the population of the non-outer areas decreased by an estimated 3524 people.

Another measure of sprawl is the average distance of residents from the city centre. Here are rough calculations for Greater Capital City areas using SA2 data (it would probably be unfair to measure all of South East Queensland against the Brisbane CBD):

Average resident distance from CBD on SA2

On this measure Perth is sprawling the fastest, with the average resident in 2018 being roughly 21 km from the CBD, up from just over 16 km in 1991. Sydney and Canberra have seen a reduction in average distance from the CBD, as inner areas become more dense.

A couple of things to note:

  • The outer areas will have some combination of urban growth and urban densification. My guess is that most population growth will be from urban sprawl, as urban consolidation is more likely to happen in the inner and middle suburbs. But my method doesn’t attempt to remove urban consolidation in outer areas.
  • You might be wondering about the inclusion of outer areas that are not experiencing urban growth. These areas are unlikely to have much population growth at all, so will have little impact on the calculations of percentage of growth in outer areas.

That said, I’ve also done a more fine grained analysis of outer growth areas using census data without these issues. See: Are Australian cities sprawling with low-density car-dependent suburbs?

Where did the new residents come from?

The ABS now publishes the components of population growth down to SA2 geography for 2016-17 onwards, so we can dig a little deeper.

Here are the components of outer suburban population growth in 2016-17 and 2017-18 (animated):

Components of city outer population growth

Internal migration refers to people moving to/from other parts of Australia (possibly including other parts of the city)

In Perth and Adelaide, less than half of the outer suburbs population growth was from new residents, whereas it was more like 72% in the other three urban centres. This might reflect relatively slower outer urban growth in Perth and Adelaide – with population growth coming more from existing residents growing families rather than new residents moving in.

Here are the components of population growth for the five urban centres as a whole:

Components of city population growth

Sydney, Perth, and Adelaide have seen existing residents leave for other parts of Australia, replaced with births and international migrants.

Here’s the same for the non-outer suburbs:

Components of city nonouter population growth

The three columns for each city do actually add to 100%. In Perth the net of the components was very little population change, so each component becomes a very large percentage of the small net total population change.

That chart is quite confusing, so instead let’s look at the underlying numbers:

Components of city nonouter population growth quantity

In Melbourne and Sydney, the net increase from births/deaths in non-outer areas was effectively cancelled out by people migrating away domestically (many likely to the outer suburbs of the same city), with the net population growth then mostly accounted for by net overseas immigration.

The only urban area where the existing non-outer area didn’t see net outbound domestic migration was South East Queensland.

For further analysis on the components of population growth, see Visualising the components of population change in Australia

Some non-Australian readers might be confused by the term “overseas”. We use it interchangeably with “international” because Australia has no land borders with other countries.

Appendix – Maps showing outer areas of cities

For Melbourne refer to the top of this post.

Sydney

sydney-cropped

I’ve used the full Greater Capital City area, which includes the Central Coast (Gosford / Wyong). This is arguably part of a conurbation with Newcastle but I’ve kept to the Greater Sydney boundary.  The large orange and yellow non-outer area to the west is mostly parkland or industrial, while the orange area to the south is mostly the Holsworth Military area which was defined as urban from 2011.

South East Queensland

seq-cropped

I’ve included all of Greater Brisbane, as well as the Gold Coast (as far as the border with NSW) and the Sunshine Coast. The conurbation population includes the established areas of the Gold Coast and Sunshine Coast as non-outer areas. The orange areas on the Sunshine Coast mostly contain National Parks and the airport, although it also includes the relatively new suburb of Peregian Springs, so not a perfect definition.

Perth

perth-cropped

The non-outer area is fairly well-defined as almost entirely urban in 2001. The entire of the City of Joondalup (on the northern coast, mostly surrounded by Wanneroo) counts as urban in 2001, although the suburb of Iluka in the north-western corner has developed more recently, so the calculation won’t be perfect.

Adelaide

adelaide-cropped

The two large orange areas in the non-outer area are non-residential, so there will be little fringe growth outside the blue area.


How do Australian and European cities compare for population and area?

Sun 6 December, 2015

Following on from my previous post comparing the density of Australian and European cities, there has been some interest in the relative size of Australian and European cities. This post takes a quick look.

To make comparisons, I’ve taken the square kilometre population grid data for Europe and Australia, and summed the population and number of cells within the urban area/centre boundaries (as discussed in last post) that have at least 100 residents (ie 1 person per hectare or more) for each city. I’ve included this (arbitrary) threshold as some urban area boundaries seem to include some non-urban land. It means that I’m approximately measuring the populated areas of cities, and large parks, industrial areas, airports, etc may therefore be excluded in this analysis.

Here’s a chart of population versus populated area (click to enlarge):

 

So Melbourne is about the same size as London and Paris but has less than half the population. Brisbane is a similar size to Milan, with half the population. Perth is larger than Berlin, but has around half the population. Adelaide has a similar population to Seville and Sofia, which are about a third the size. Sydney has a similar population as Barcelona but is almost four times larger.

Because I couldn’t label all the cities in the chart above, here is a data table (smaller values in red, larger values in blue):

AU EU city data table
I’m hoping to add Canadian and US cities to my analysis soon.


Comparing the densities of Australian, European, Canadian, and New Zealand cities

Thu 26 November, 2015

[updated March 2016 to add Canadian and New Zealand cities]

Just how much denser are European cities compared to Australian cities? What about Canadian and New Zealand cities? And does Australian style suburbia exist in European cities?

This post calculates the population-weighted density of 53 Australian, European, and Canadian cities with a population over 1 million, plus the three largest New Zealand cities (only Auckland is over 1 million population). It also shows a breakdown of the densities at which these cities’ residents live, and includes a set of density maps with identical scale and density shading.

Why Population Weighted Density?

As discussed in previous posts, population-weighted density attempts to measure the density at which the average city resident lives. Rather than divide the total population of a city by the entire city area (which usually includes large amounts of sparsely populated land), population weighted density is a weighted average of population density of all the parcels that make up the city. As I’ve shown previously, the size of the parcels used makes a big difference in the calculation of population-weighted density, which makes comparing cities difficult internationally.

To overcome the issue of different parcel sizes, I’ve used kilometre grid population data that is now available for both Europe and Australia. I’ve also generated my own kilometre population grids for Canadian and New Zealand cities by proportionally summing populations of the smallest census parcels available.

Some measures of density exclude all non-residential land, but the square kilometre grid approach means that partially populated grid parcels are counted, and many of these parcels will include non-residential land, and possibly even large amounts of water. It’s not perfect, particularly for cities with small footprints. For example, here is a density map around Sydney harbour (where light green is lower density, dark green is medium density and red is higher density):

Sydney harbour

You can see that many of the grid cells that include significant amounts of water show a lower density, when it fact the population of those cells are contained within the non-water parts of the grid cell. The more watery cells, the lower the calculated density. This is could count against a city like Sydney with a large harbour.

Defining cities

The second challenge with these calculations is a definition of the city limits. For Australia I’ve used Urban Centre boundaries, which attempt to include contiguous urbanised areas (read the full definition). For Europe I’ve used 2011 Morphological Urban Areas, which have fairly similar rules for boundaries. For Canada I’ve used Population Centre, and for New Zealand I’ve used Urban Areas.

These methodologies tend to exclude satellite towns of cities (less so in New Zealand and Canada). While these boundaries are not determined in the exactly the same way, one good thing about population-weighted density is that parcels of land that have very little population don’t have much impact on the overall result (because their low population has little weighting).

For each city, I’ve included every grid cell where the centroid of that cell is within the defined boundaries of the city. Yes that’s slightly arbitrary and not ideal for cities with dense cores on coastlines, but at least I’ve been consistent. It also means some of the cells around the boundary are excluded from the calculation, which to some extent offsets the coastline issues. It also means the values for Australian cities are slightly different to a previous post.

All source data is dated 2011, except for France which is 2010, and New Zealand which is 2013.

Comparing population-weighted density of Australian, European, Canadian and New Zealand cities

AU EU CA NZ Population Weighted Density

You can see the five Australian cities are all at the bottom, most UK cities are in the bottom third, and the four large Spanish cities are within the top seven.

Sydney is not far below Glasgow and Helsinki. Adelaide, Perth and Brisbane are nothing like the European cities when it comes to (average) population-weighted density.

Three Canadian cities (Vancouver, Toronto and Montreal) are mid-range, while the other three are more comparable with Australia. Of the New Zealand cities, Auckland is surprisingly more dense than Melbourne. Wellington is more dense that Vancouver (both topographically constrained cities).

But these figures are only averages, which makes we wonder…

How much diversity is there in urban density?

The following chart shows the proportion of each city’s population that lives at various urban density ranges:

AU EU CA NZ urban density distribution

Because of the massive variations in density, I had to break the scale interval sizes at 100 persons per hectare, and even then, the low density Australian cities are almost entirely composed of the bottom two intervals. You can see a lot of density diversity across European cities, and very little in Australian cities, except perhaps for Sydney.

You can also see that only 10% of Barcelona has an urban density similar to Perth or Adelaide. Which makes me wonder…

Do many people in European cities live at typical Australian suburban densities?

Do many Europeans living in cities live in detached dwellings with backyards, as is so common in Australian cities?

To try to answer this question, I’ve calculated the percentage of the population of each city that lives at between 10 and 30 people per hectare, which is a generous interpretation of typical Australian “suburbia”.

AU EU CA NZ cities percent at 10 to 30 per hectare

It’s a minority of the population in all European cities (and even for Sydney). But it does exist. Here are examples of Australian-style suburbia in outer Hamburg, Berlin, LondonMilan, and even Barcelona (though I hate to think what some of the property prices might be!)

How different is population-weighted density from regular density?

Now that I’ve got a large sample of cities, I can compare regular density with population weighted densities (PWD):

PWD v regular density 2

The correlation is relatively high, but there are plenty of outliers, and rankings are very different. Rome has a regular density of 18, but a PWD of 89, while London has a regular density of 41 and PWD of 80. Dublin’s regular density of 31 is relatively close to its PWD of 47.

Wellington’s regular density is 17, but its PWD is 49 (though the New Zealand cities regular density values are impacted by larger inclusions of non-urbanised land within definitions of Urban Areas).

So what does the density of these cities look like on a map?

The following maps are all at the same scale both geographically and for density shading. The blue outlines are urban area boundaries, and the black lines represent rail lines (passenger or otherwise, and including some tramways). The density values are in persons per square kilometre (1000 persons per square kilometre = 10 persons per hectare). (Apologies for not having coastlines and for some of the blue labels being difficult to read).

Here’s Barcelona (and several neighbouring towns), Europe’s densest large city, hemmed in by hills and a coastline:

Barcelona

At the other extreme, here is Perth, a sea of low density and the only city that doesn’t fit on one tile at the same scale as the other cities (Mandurah is cut off in the south):

 

Perth

Here is Paris, where you can see the small high density inner core matches the high density Metro railway area:

Paris

Similarly the dense inner core of London correlates with the inner area covered by a mesh of radial and orbital railways, with relatively lower density outer London more dominated by radial railways:

London

There are many more interesting patterns in other cities.

What does this mean for transport?

Few people would disagree that higher population densities increase the viability of high frequency public transport services, and enable higher non-car mode shares – all other things being equal. But many (notably including the late Paul Mees) would argue that “density is not destiny” – and that careful design of public and active transport systems is critical to transport outcomes.

Zurich is a city often lauded for the high quality of its public transport system, and its population weighted density is 51 persons/ha (calculated on the kilometre grid data for a population of 768,000 people) – which is quite low relative to larger European cities.

In a future post I’ll look at the relationship between population-weighted density and transport mode shares in European cities.

All the density maps

Finally, here is a gallery of grid density maps of all the cities for your perusing pleasure (plus Zurich, plus many smaller neighbouring cities that fit onto the maps). All maps have the same scale and density shading colours.

Please note that the New Zealand and Canada maps do not include all nearby urbanised areas. Apologies that the formats are not all identical.


What does the census tell us about cycling to work?

Mon 27 January, 2014

Who is cycling to work? Where do they live? Where do they work? How old are they? What work do they do? Do men commute by bicycle more than women? How far are cyclists commuting? What other modes are cyclists using?

The census provides some answer to these questions for the entire Australian working population, albeit for one winter’s day every five years.

This post builds on material I presented at the Bike Futures 2013 conference, using census data from across Australian with a little more detail on capital cities and my home city Melbourne.

It’s not a short post, so settle in for 13 charts and 17 maps of data analysis.

How has cycling mode share changed over time?

The first chart shows the proportion of journeys to work by bicycle (only) in Australia’s capital cities.

Cyclcing only mode share for cities time series

Darwin appears to the capital of cycling to work, although it is quickly losing ground to Canberra (unfortunately I don’t have figures for Darwin pre-1996).  The census is conducted in Darwin’s dry season, but other data suggests there is little difference in bicycle activity between the wet and dry seasons.

Melbourne has shown very strong growth since 2001 and Sydney showed strong growth between 2006 and 2011. Cycling mode share has grown in all cities since 1996.

Mode shares collapsed in Adelaide, Sydney, Brisbane, and Melbourne between 1991 and 1996, which many people have attributed to the introduction of mandatory helmet laws (Alan Davies has a good discussion about this issue on his blog).

But as I pointed out at the start, census data is only good for one winter’s day every five years. Does the weather on these days impact the results?

Here is a chart roughly summarising the weather in (most of) the capital cities for 2001, 2006 and 2011 in terms of minimum temperature, maximum temperature and rainfall. It doesn’t cover wind, nor what time of day it rained (although perhaps some fair-weather cyclists might avoid riding on any forecast rain). It also fails to show the sub-zero minimums in Canberra (involves asking too much from Excel).

Census day weather

You can see that 2011 was wetter in Adelaide and Hobart than previous years, and this coincides with lower cycling mode shares in these cities in 2011. So census data is quite problematic from a weather point of view. That said, most cities had very little or no rain on the last three census days.

Where were the commuter cyclists living and working?

Other posts on this blog have also covered some of these maps, but not for all cities.

Some of the following maps are animated to show both 2006 and 2011 results, and note that the colour scales are not the same for all maps. I’ve sometimes zoomed into inner city areas when these are the only places with significant cycling mode share. White sections on maps represent areas with low density, or where the number of overall commuters was very small (sorry I haven’t gone to the effort of making every map 100% consistent, but rest assured the areas in white are less interesting). Click on the maps to see more detail.

Canberra

Firstly home locations:

ACT 2011 bicycle

The cycling commuters mostly appear to be coming from the inner northern suburbs. I don’t know Canberra intimately, but Google maps doesn’t show a higher concentration of cycling infrastructure in this area compared to the rest of Canberra.

Secondly, bicycle mode share by work destination (at the larger SA2 geography):

Canberra 2011 SA2 dest bicycle any

The highest mode share was 12% in the SA2 of Acton, which is dominated by the Australian National University. Perhaps a lot of the university staff live in the inner northern suburbs of Canberra?

Melbourne

By home location:

Melb bicycle any zoom

Cycling mode share is highest for origins in the inner northern suburbs and has grown strongly since 2006. There’s also been some growth in the Maribyrnong  and Port Phillip council areas off a lower base.

By work location (note: this data is at the smaller destination zone geography):

bicycle mode share DZ Melbourne inner

Cycling to work boomed in inner Melbourne between 2006 and 2011, particularly to workplaces in the inner north. Princess Hill had the highest bike share of 14% in 2011 (possibly dominated by Princess Hill Secondary College employees), followed by a pocket of south-west Carlton that jumped from around 5% to 13%. Apart from the inner north, there were notable increases in Richmond, Balaclava, Yarraville and Southbank. Cycling rates within the CBD are relatively low, perhaps reflecting limited cycling infrastructure on CBD most streets in 2006 and 2011.

Adelaide

Firstly, by home:

Adl bicycle any zoom

Adelaide appears to lack any major concentrations of cycling, although slightly higher levels are found just outside the parkland surrounding the CBD.

Secondly, bicycle mode share by work destination at the (larger) SA2 geography:

Adl 2011 SA2 dest bicycle

The numbers are all small, with 3% in the (large) Adelaide CBD. I imagine a map based on destination zones might show some pockets with higher mode share, but that data isn’t freely available unfortunately.

Perth

By home location:

Perth cycling inner

The inner northern and western suburbs, and south of Fremantle seem to be the main areas of cycling growth.

For workplaces at the larger SA2 geography:

Perth 2011 dest SA2 bicycle

The highest mode share was in ‘Swanbourne – Mount Claremont’, only slightly ahead of ‘Nedlands – Dalkeith – Crawley’ – which contains the University of Western Australia. The Fremantle SA2 (with 3% bicycle mode share by destination) includes of Rottnest Island where around 20% of the 73 resident commuters cycled to work, but the result will be easily dominated by the mainland Fremantle section.

Again, I suspect some smaller pockets would have had higher mode shares if I had access to destination zone data.

Brisbane

By home location:

Bris cycling

There was significant growth in cycling from the West End, and around the University of Queensland/St Lucia – which may be related to the opening of the Eleanor Schonell Bridge (after the 2006 census) which only carries pedestrians, cyclists and buses.

By work location (at larger SA2 geography):

Bris 2011 dest bicycle

The highest share was in St Lucia – which is probably dominated by the University of Queensland. Neighbouring Fairfield – Dutton Park came in second. These two areas are directly joined by the Eleanor Schonell Bridge which provides cycling a major advantage over private transport. It seems to have been quite successful at promoting cycling in these areas.

Sydney

First by home location:

Sydney cycling zoom

There were quite noticeable shifts to cycling in the inner south and around Manly.

By work location (by smaller destination zone geography):

Syd dest bicycle

There was strong growth, again in the inner southern suburbs. In 2011 bicycle mode share was highest in Everleigh (11.5%) following by the University of NSW (Paddington) at 7.9% (excluding travel zones with less than 200 employees who travelled).

Rural Australia

Here’s a map showing bicycle share by SA2 workplace location for all of Australia, which gives a sense of bicycle mode shares in rural areas.

Australia 2011 dest bicycle mode share

Higher regional/rural bicycle mode shares are evident in southern Northern Territory (Petermann – Simpson), Katherine (NT), the Exmouth region, the Otway SA2 on the Great Ocean Road in western Victoria, and Longford – Loch Sport in eastern Victoria. I’ll let other people explain those.

The SA2s in Australia with the highest cycling mode shares in 2011 (by home location) were:

  • Lord Howe Island, NSW: 21%
  • Acton, ACT (covering Australian National University): 12%
  • Port Douglas, Queensland: 10%
  • Parkville, Victoria (covering the University of Melbourne main campus): 8%
  • East Side, Northern Territory (Alice Springs): 8%
  • St Lucia, Queensland (covering the University of Queensland): 8%

How far did people cycle to work? (in Melbourne)

It is difficult to get precise distances for journeys to work, but approximations are possible. I’ve calculated the approximate distance for each journey to work by measuring the straight line distance between the centroid of the home and work SA2s and then rounded to the nearest whole km. To give a feel for how this looks, here is a map showing inner Melbourne SA2s and the approximate distances between selected SA2s:

SA2 distances sample map

This distance measure generally works well in inner city areas. However in the outer suburbs SA2s are often much larger in size, and sometimes only partially urbanised. However as we’ve seen above the volumes of cycling journeys to work are very low in these places, so that hopefully won’t skew the results signficantly.

2011 Melb JTW cycling distances

Two-thirds of cycling journeys to work in Melbourne were approximately 5km or less, with 80% less than 7 km, and 30% were 2 km or less.

The longest commute recorded within Greater Melbourne was approximately 44km.

Was cycling combined with other modes?

The following chart shows that bicycles were seldom combined with other modes:

cycling - presence of other modes 2006 2011

Around 16-17% of cycling commuters in the four largest cities in 2011 involved another mode. Use of other modes with cycling grew in all cities between 2006 and 2011

The next chart shows what these other modes were:

Other modes with cycling 2011

Sydney, Melbourne, Brisbane and Perth had high rates of bicycle use with trains, while combining car and bicycle was more common in the smaller cities.

The next chart shows the number of trips involving bicycle and trains in 2006 and 2011:

JTW bicycle + train raw numbers

The chart shows the relative success of Melbourne Parkiteer program of introducing high quality bicycle cages at train stations, which has helped boost the number of people access the train network by bicycle by around 600 between 2006 and 2011. I understand a similar project has been undertaken in Perth which saw growth of around 250.

In Melbourne, the home locations for people using bicycle and train are extremely scattered – the following map shows a seemingly random smattering:

Melb bicycle + train

How does commuter cycling vary by age and sex?

bicycle mode share by age sex

This chart shows remarkably clear patterns. Males were much more likely to cycle to work. Teenage boys (particularly those under driving age) had the highest cycling mode shares (with teenage girls much less likely to cycle). The next peak for men was around the mid thirties, and women’s mode share peaked around ages 28-32.

Where are women more likely to cycle to work?

Women are sometimes talked about as the “indicator species” for cycling – ie if you have large numbers of women cycling compared to men then maybe you have good cycling infrastructure that attracts a broader range of people.

The census data can shed some light on this. For each SA2 in Melbourne, I have calculated the male and female cycling mode shares both as a home origin, and as a work destination (this analysis looks at people who only used bicycle (and walking) in their journey to work). I’ve then calculated the ratio of male mode share to female mode for each area (SA2).

I’ve used the ratio of mode shares in preference to the straight gender split of cycling commuters – as female workforce participation is generally lower and there can be spatial variations in the gender split of the workforce. 46% of all journeys within Greater Melbourne in the 2011 census were by females, but only 28% of cycling journeys to work were by females.

The following map shows the ratio of male to female cycling mode shares by home location for SA2s (with more than 50 commuter cyclists, and where the bicycle mode share is above 1%):

Melb 2011 cycling gender ratio home

Areas attracting comparable female and male bicycle shares include the inner northern suburbs and – curiously – Toorak (probably many using the off-road Gardiners Creek and Yarra Trails to access the city centre).

Here’s a similar map, but by workplace areas:

Melb 2011 cycling share gender ratio WP

The patterns are much more pronounced. Six SA2s had higher female mode shares than male: Yarraville, Fitzroy North, Brunswick East, Ascot Vale, Carlton North – Princes Hill, and Elsternwick.

The areas with near-1 ratios of male to female mode shares were similar to the areas with higher total cycling mode shares. The following chart confirms this relationship (note areas with cycling mode shares below 1% not shown):

gender ratio and overal mode share

What this also shows is that home-area mode shares reach much higher values than workplace-area mode shares. Perhaps the secret is in the home-area cycling infrastructure? Or perhaps it’s more to do with the residential demographics?

See the Bicycle Network Victoria website for more data about female cycling rates in Melbourne.

Do women cycle the same distances as men?

Again using the approximate straight line commuting distances (as explained above) the following chart shows that women’s cycling commutes are a little shorter than men’s, but not by much:

commute distance and gender

The median female cycling commute was approximately 1.8 km shorter than for males.

What types of workers are more likely to cycle to work?

Firstly, I’ve looked at the differences between public and private sector employees.

Before I dive into the data, it’s important to recognise that different types of workers are not evenly spread across Australia. Some types of jobs concentrate in city centres while others might be more likely to be found in the suburbs or the country. Therefore many of the following charts show results for Australia as a whole, but also for people working in central Melbourne (the SA2s of Melbourne, Carlton, Docklands, East Melbourne, North Melbourne and Southbank), which has a relatively high rate of cycling to work.

The data suggests public servants were much more likely to cycle to work:

cycling by employer type

The local government result has prompted me to calculate the cycling mode shares for local government workers across Australia (assuming workers work within the council for which they work). Here are bicycle mode shares for the top 20 councils for employee cycling mode share in the census:

Council State Bicycle mode share
Tumby Bay (DC) SA 23.5%
Kent (S) WA 18.8%
Carnamah (S) WA 16.0%
Central Highlands (M) Qld 14.3%
Uralla (A) NSW 13.8%
Wakefield (DC) SA 13.5%
Nannup (S) WA 12.5%
Broome (S) WA 12.1%
Alice Springs (T) NT 11.8%
Narembeen (S) WA 11.5%
Blackall Tambo (R) Qld 11.3%
Kowanyama (S) Qld 11.2%
Exmouth (S) WA 11.1%
Yarra (C) Vic 10.4%
Glamorgan/Spring Bay (M) Tas 8.7%
Torres (S) Tas 8.6%
Yarriambiack (S) Qld 8.3%
Mallala (DC) Vic 8.0%
Richmond Valley (A) NSW 7.2%
McKinlay (S) Qld 6.7%

Most of the top 20 are non-metropolitan councils. Melbourne’s City of Yarra is the top metropolitan city council (within Greater Melbourne the next highest councils are Moreland 6.1%, Port Phillip 5.6%, Melbourne 5.6% and then Stonnington 4.9%).

National government employees had the highest bicycle mode share of all of Australia. I suspect this relates to university staff, as many of the earlier maps showed university campuses often had relatively high rates of employees cycling (85% of “higher education” employees count as “national government” employees).

The census data can also be disaggregated by income:

cycling mode share by income

Cycling mode shares were highest for people on high incomes. Initially I thought this might reflect the fact that high income jobs are often in city centres were cycling is relatively competitive with private and public transport. However, even within central Melbourne workers, cycling rates are higher for those on high incomes (curiously with a second peak for those on incomes between $300 and $399 per week).

Does cycling to work make you healthier and therefore more likely to get promoted and earn a higher income? Or are employers offering workplace cycling facilities to attract highly paid staff? I haven’t got data that answer those questions.

Consistent with higher rates of cycling for higher income earners, those in more highly skilled occupations were more likely to cycle to work:

cycling mode share by profession

I suspect this might reflect the presence/absence of workplace cycling facilities (perhaps office workplaces are more likely to provide cycling facilities than retailers for example) and/or the ability to afford to live close to work (which makes cycling easier).

Are recent immigrants more likely to ride to work?

This one really surprised me and I only investigated it because it was possible to do. The census asks what year people migrated to Australia (if not born here), and it turns out that recent immigrants were much more likely to cycle to work:

cycling mode share by migration year

This might be explained by the demographics of recent immigrants (eg car ownership, home location, income levels, occupation and age).

I’d welcome comments on any other trends people might spot in the data.