Can we learn anything from pre-pandemic working-at-home patterns that will help us predict transport demand “after” the pandemic?
This post investigates work-at-home patterns from the ABS census 2016 for the six largest Australian cities, with some deeper dives for Melbourne and Sydney. I’ll answer questions such as: What occupations and industries were more likely to work-at-home? How did work-at-home rates vary by home and work locations? How many people had their home double as their workplace? Who was ‘remote working’ at home away from their regular workplace?
I’ve found the results quite interesting – and not quite what you might expect from the our current pandemic perspective.
What proportion of workers worked at home in 2016?
The following table shows between 3.3% and 5.2% of major city workers reported that they “worked at home” on census day in 2016 in Australia’s six largest cities:

This highest rate was in Brisbane, and the lowest in Canberra.
What occupations were more likely to work at home in 2016?
Here’s a chart showing 2016 journey to work mode shares across Australia’s six largest cities by main occupation category. Normally I exclude people working at home from mode share charts, but for this analysis I’m including “worked at home” as a “mode”:

Technical note: As usual on my blog, public includes all journeys involving a bus, tram, train and/or ferry trip, Active includes walk-only and cycle-only journeys, with all other journeys counted as Private.
You’ll notice the occupations with the highest rates of working at home were also the occupations with the highest public transport mode shares – professionals, clerical and administrative workers, and managers.
Here’s another view of that data, this time providing the occupation breakdown of commuters for each “mode”:

Again you can clearly see the same three occupation categories that dominated both working at home and public transport commuting.
No surprises there, right? These occupations generally spend a lot of time in offices either at computers or meeting with others – which can more easily be done online so are more likely to be amenable to working from home. The other occupation categories are more likely to necessitate working at a specific workplace.
But there are lots of different types of managers and professionals and they work in many different industries, so let’s dig a little deeper.
How did working at home vary by employment industry?
Here’s a look at the worked-at-home rates in 2016 by industry and occupation (highest level categories). I’ve sorted the occupations and industries such that the highest rates of worked-at-home are towards to the left and top of the table respectively.

The highest rates of working at home were found in Agriculture, Forestry and Fishing, Arts and Recreational Services, and Construction. Not exactly the sorts of jobs you would expect to fill multiple CBD office towers.
It’s also worth looking at the second level of occupation classifications:

Now we start to see working at home rates are very high for farm managers and arts and media professionals. For many of these people their workplace is quite likely to also be their home.
Many occupations that you might expect to be generally office-based had a working at home rate of around 9% – including HR, marketing, ICT, design, engineering, science and transport professionals.
How did working at home vary by home location?
Here’s a map showing working at home rates for SA2s across Greater Melbourne:

Working at home rates were highest in peri-urban areas, higher than the average in more advantaged suburbs of Melbourne, and the lowest rates of working at home were for employees from more disadvantaged areas.
Here’s the same for Sydney:

The highest rates were also seen in peri-urban areas of Greater Sydney, and the generally wealthy upper north shore.
How did working at home vary by workplace location?
Here’s a chart showing the worked at home share for the Melbourne and Geelong region, by workplace location.

The highest worked at home rate was 47.5% seen on French Island – a sparsely populated island south-east of Melbourne which contains many small farms and some tourist facilities. Other worked-at-home hotspots include the Point Cook East SA2 (which includes an air force base) and Panton Hill – St Andrews (which I understand contains many small farms). In fact, worked-at-home rates were again generally much higher in peri-urban areas and very low in suburban areas.
Some of the lowest rates of working at home were seen for employees in industrial areas and at Melbourne Airport. Many of these jobs are probably hard to do remotely.
2.0% of Melbourne CBD workers worked at home on census day in 2016. And the SA2s surrounding the CBD were all below 3%.
Here’s the same map for Sydney:

Again the highest rates of employees working at home were seen in peri-urban areas, and the Sydney CBD saw 1.9% of employees working at home.
These maps tell us that working at home in 2016 was most common in peri-urban areas, and relatively rare in dense employment areas such as CBDs. The COVID19 pandemic triggered significant levels of working at home during lockdown periods which emptied central city office towers and has remained quite common ever since. So it is likely that the profile of people working at home has changed significantly since 2016 to include a lot more white collar workers.
The fact that working at home rates were high in peri-urban areas when measured as both home location and work location suggests that for many people their home is their workplace. So…
How common was remote working in 2016?
You might have noticed that I’ve been referring to “worked at home” rather than the currently popular term “working from home”. That’s not just because its the wording used by the ABS in reporting the census, but because “working from home” is a little ambiguous as to whether people are working at home and away from their regular workplace, or whether their home is also their regular workplace. Perhaps a better term to describe people working at home and away of their regular workplace is “remote working”.
I have extracted worked-at-home workers’ home and work SA2 locations for people who lived and worked in Greater Melbourne and found that 89% of workers who worked at home, had their usual place of work in the same SA2 as where they lived (SA2s are roughly the size of a suburb).
So while 4.5% of workers who both lived and worked in Greater Melbourne worked at home in 2016, only 0.48% worked at home on census day when their regular workplace was in a different SA2. Remote working was an order of magnitude smaller than working at home.
Now it is also possible that some workers who lived and regularly worked in the same SA2 were actually working at home remote from their workplace on census day. However I expect this to be rare, and some further analysis (detailed in the appendix to the post) found that the almost every worker who worked and lived in the same SA2 had their home SA1 area intersect or overlap with their workplace Destination Zone (both the smallest census land areas available). This doesn’t guarantee that their home was their regular workplace, but it makes it quite probable. These workers would mostly not have had a very long commute, so there would be little incentive to remote work to avoid commuting effort. Also, I’ve found people who travelled to work in the same SA2 as they lived were slightly more likely to work in accommodation and food services, construction and retail trade – industries that are likely to require worksite attendance.
So I think I can fairly safely estimate the 2016 remote working rate in Greater Melbourne to have been 0.5%.
I’ve repeated this calculation for Australia’s six largest cities:

I’ve ordered the cities by working population, and you can see remote working rates decline across the chart for smaller cities. This might reflect there being a larger incentive to avoid longer and/or expensive commutes in larger cities by remote working.
Curiously Brisbane had the highest rate of workers whose home doubled as their workplace (4.9%), while the Australian Capital Territory (i.e. Canberra) had the lowest rates of both working at home and remote working.
I think these quite small estimated rates of remote working are an important finding, as several recent reports from the Productivity Commission, SGS Economics and Planning, Monash University, and iMove may have conflated working from home with working remotely at home, at least in their discussion of the topic. It’s critical that these metrics are not mixed up. And thankfully I’m not aware of any obvious miscalculations in their work.
How did rates of remote working vary across workplace locations in 2016?
The following maps exclude people who lived and worked in the same SA2, to get an estimate of remote working by workplace SA2:

The estimated remote working rate peaked for the Docklands SA2 at 1.8%, with Melbourne’s CBD at 1.7%, Southbank at 1.5%, and Albert Park at 1.4%. These are higher than the worked-at-home rates calculated above for all employees who regularly worked in the city centre, because they remove people who regularly work at their home in the central city.
There were also some seemingly random suburban locations with similar rates of remote working such as Forest Hill and Fawkner at 1.6%.
Here’s the equivalent map for Sydney:

There was a curious hot spot of West Pennant Hills at 5.5%, while the Sydney CBD area was 1.8%, North Sydney – Lavender Bay 2.3%, Macquarie Park – Marsfield 2.0%, and North Ryde – East Ryde 1.8%.
How did rates of remote working vary by home SA2?
Here’s a map estimating remote working rates by home location for Melbourne in 2016:

Generally higher rates were seen in peri-urban areas with Flinders at 2.0%, Mount Eliza at 1.4%, Gisborne at 1.2%, and Panton Hill – St Andrews at 1.6%. This may reflect “sea-changers” and “tree-changers” avoiding a long commute to work. The lowest rates were seen in the more disadvantaged areas of Melbourne, which probably reflects such employees being more likely to work in occupations that require attendance at their workplace.
And for Greater Sydney:

Higher rates of remote working were seen across the upper north shore, with Avalon – Palm Beach at 2.4%, and in many peri-urban areas. But the highest rate was seen at Blackheath – Megalong Valley (in the Blue Mountains) with 3.5%.
In what occupations and industries was remote working more common in 2016?
It’s stretching what you can do with ABS TableBuilder, but I’ve extracted counts of workers by home SA2, work SA2, industry main code, and whether the worker travelled to work or worked at home, for Greater Melbourne for 2016. I’ve then filtered for workers whose regular workplace is not in their home SA2. It’s a little problematic in that about one quarter of the non-zero records in this data were a value of 3, and ABS never reports counts of 1 or 2 as it uses randomisation to protect privacy for very small counts. So the totals are accumulating the impacts of lots of small random adjustments, but it’s not clear that this would introduce a bias to the overall estimate, but we should still treat these with caution and I’m not going to quote more than one decimal place. That said, the estimates do seem very plausible:

The industries with the highest estimated rates of remote working are mostly white collar jobs, whilst those industries with the lowest rates are more blue collar.
I did the same analysis for occupations, and again there are few surprises in the estimated rates of remote work across the categories:

What will the 2021 census tell us?
The 2021 census was conducted during a period of tight lockdowns in Victoria and New South Wales. Most other states had relatively few restrictions, but had experienced lockdowns in 2020, so were arguably in a “post pandemic” scenario – at least temporarily. So it will be very interesting to compare 2016 rates of remote working to those in different cities in 2021. For cities that were not in lockdown we will likely get a good sense of which occupations had high rates of (unforced) remote working, which will be very useful for modelling future rates of remote working and the ongoing impact on transport demand.
I expect the patterns across industries and occupations will be similar between 2016 and 2021, but with much higher rates of remote working in 2021.
The data will be released in October 2022 and I’ll be keen to calculate remote working estimates and share those on the blog.
There have also been several surveys that provide breakdowns of remote working by occupation and/or industry during the pandemic (Productivity Commission, iMove, University of Sydney ITLS).
Appendix: Did anyone live and work in the same SA2 but not have their workplace at their home?
To try to answer this I extracted data for “worked at home” cases in Greater Melbourne at the maximum available resolution – SA1 for home location and Destination Zone for workplaces, and determined whether their home SA1 intersected with their workplace Destination Zone. An intersection between these areas doesn’t guarantee the workplace is at their home, but the absence of an intersection does guarantee that the workplace is not at their home.
Here’s a map extracted from maps.abs.gov.au that shows 2016 destination zone boundaries in blue, and SA1 boundaries in red for part of the northern suburbs of Melbourne:

I dare suggest that if someone lived in an SA1 that intersected with their regular workplace Destination Zone, it’s pretty likely that they ordinarily worked at home.
This analysis is stretching the data, because when you extract small counts from ABS they apply random small adjustments to protect privacy and also you never see a count of 1 or 2 people. Problematic as it is, the sum of people living and working in the same SA2, but living in an SA1 that does not intersect the destination zone in which they work was just 95 for all of Greater Melbourne, out of around 70,000 people who lived and worked in the same SA2. This is a lower bound on the true number, but I expect the true number to still be very small. Hence I’m comfortable with an estimate of 0.5% remote working in Melbourne in 2016 (to one decimal place).
Another potential issue is that SA2s are not consistently sized across cities, and are generally smaller in Brisbane and Canberra. This means remote working from a nearby workplace would be more likely to be detected those cities. However I suspect these instances will still be tiny, and the estimated remote working rates in Brisbane and Canberra certainly don’t appear to be outliers.